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ABSTRACT 

The design of large scale complex engineered systems (LSCES) involves hundreds or 

thousands of designers making decisions at different levels of an organizational hierarchy. 

Traditionally, these LSCES are designed using systems engineering methods and processes, where 

the preferences of the stakeholder are flowed down the hierarchy using requirements that act as 

proxies for preference. Current processes do not provide a system level guidance to subsystem 

designers. Value-Driven Design (VDD) offers a new perspective on complex system design, where 

the value preferences of the stakeholder are communicated directly through a decomposable value 

function, thereby providing a mechanism for improved system consistency. 

Requirements-based systems engineering approaches do not offer a mathematically 

rigorous way to capture the couplings present in the system. Multidisciplinary Design 

Optimization (MDO) was specifically developed to address couplings in both analysis and 

optimization thereby enabling physics-based consistency. MDO uses an objective function with 

constraints but does not provide a way to formulate the objective function. Current systems 

engineering processes do not provide a mathematically sound way to make design decisions when 

designers are faced with uncertainties.  Designers tend to choose designs based on their preferences 

towards risky/uncertain designs, and past research has shown that there needs to be a consistency 

in risk preferences to enable design decisions that are consistent with stakeholder’s desires.  

 This research exploits the complimentary nature of VDD, MDO and Decision Analysis 

(DA) to enable consistency in communication of system preferences, consistency in physics and 

consistency in risk preferences. The role of VDD in this research is in formulating a value function 

for true preferences, whereas the role of MDO is to capture couplings and enable optimization 

using the value function, and the role of DA is to enable consistent design decision-making under 
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uncertainties. A holistic framework for system optimization called the Value-Based Systems 

Engineering (VBSE) framework is proposed in this research. This framework acts as the first step 

towards enabling overall system consistency in decision-making in the design of LSCES. A 

commercial communication geo-stationary satellite model is created and used as a testbed 

throughout to demonstrate the different aspects of this research.   
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CHAPTER 1 

INTRODUCTION 

Large-scale complex engineered systems (LSCES) are typically composed of tightly coupled 

interacting subsystems (spanning many levels of the design hierarchy) that yield a collective 

behavior. Often, these complex systems interact with other complex systems (such as a fighter jet 

interacting with an aircraft carrier).  The design of these LSCES is increasingly being recognized 

as a decision-making process as stated by George Hazelrigg [1]. Numerous workshops have been 

conducted by NASA and NSF on the challenges of designing LSCES [2-6]. With so many design 

decisions being made by a number of individuals spread across the hierarchy of an organization 

and at times also across multiple organizations, it is crucial to have consistency in design decision-

making.  

 Traditionally, these LSCES are designed using systems engineering methods and 

processes, where the preferences of the stakeholder are flowed down the hierarchy using 

requirements. Requirements are defined for the expected behavior of the system, which is 

essentially stating what is not desired of the system. Requirements are usually formed based on 

customer needs, physical interfaces, environmental limitations, legacy knowledge, etc. These 

primary requirements are then passed down to the teams designing the sub-systems. These lower 

level teams base their design on the requirements, at the same time forming their own requirements 

and passing them down to further subsystem levels. This continues further and the subsystems are 

designed based on the requirements set forth. The designs are then integrated to form a complete 

system. While integrating, if there is a misalignment with respect to requirements, the requirements 

are altered until a preferred design is obtained. Any integrated system that meets all requirements 

is then considered acceptable. However, this approach does not capture the true preferences of the 
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stakeholders as requirements only serve as proxies to the actual preferences.  They represent what 

the stakeholder does not want rather than what is wanted. This leads to a lack of consistency in the 

communication of preferences across the subsystems (and even organizations) involved.  Also, 

current systems engineering processes do not offer a mathematical foundation to compare designs 

that satisfy requirements and therefore all the designs that satisfy requirements are treated equal. 

In other words, there is no existing framework for system optimization. Requirements restrict 

design exploration thereby constraining designer freedom. An alternative systems engineering 

approach called Value-Driven Design (VDD) offers a new perspective on complex system design, 

where the preferences of the stakeholder are communicated through a decomposable mathematical 

function called value function, while reducing the number of requirements placed on the design 

space [7]. Hence, VDD enables an improved means of promoting system consistency in 

communicating preferences. VDD is a way of thinking and does not provide any tools or methods 

to design. The value function, which is a special case of an objective function, is singular in unit 

and enables direct comparison of design alternatives.  

 Requirements-based systems engineering approaches use Interface Control Documents 

(ICDs) to address interactions [8], which do not mathematically capture the physics-based 

couplings present in the system. Multidisciplinary Design Optimization (MDO), a field that 

evolved from structural optimization was established to enable optimization of the system by 

addressing the inherent interactions to achieve system consistency associated with physics [9-11]. 

Couplings are captured both in analysis and optimization. In traditional MDO, preferences are 

communicated using an objective function subject to constraints from traditional systems 

engineering [12]. It should be noted that MDO does not provide a way to formulate an objective 

function. Traditionally, designers formulate optimization problems using some proxies for the 
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objective functions, such as mass or cost in the case of a commercial system, whereas the true 

preference might be net present profit. The role of VDD is to represent the true preference(s) of 

the stakeholder in a value function (which serves as the objective function), with a side benefit of 

reducing constraints due to requirements.  

 Current approaches in systems engineering do not offer a rigorous method on how to make 

design decisions when uncertainties are present. As mentioned earlier, design is a decision-making 

process and it involves a number of individuals, and past research has already shown that when 

uncertainties are present,  an improper communication or no communication of risk preferences 

will result in designers making decisions based on their own risk preference [13]. This results in 

designs that are not consistent with the stakeholder’s desires. Decision Analysis (DA), a normative 

model, facilitates decision-making under uncertainties [14]. DA provides a mathematical 

framework for decision-making in an uncertain design environment using expected utility theory 

[14, 15]. In utility theory, the value and risk preferences of an individual are captured using a utility 

function and the most preferred design has the highest expected utility [16].  

The focus of this research is to address the consistency issues present in the current systems 

engineering processes by bringing together Value-Driven Design (VDD), Multidisciplinary 

Design Optimization (MDO) and Decision Analysis (DA).  
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Research Questions 

 

 The following specific research questions were formed based on the issues identified in the 

current systems engineering processes.  

 

Research question 1 

“Can Value-Driven Design (VDD) and Multidisciplinary Design Optimization (MDO) together 

enable system designs that are consistent with stakeholder desires and consistent in system 

physics?”  

This research question will be addressed by creating a value function formulation associated with 

a satellite system example that captures the true preference(s) of the stakeholder and by capturing 

the couplings present in the system using multidisciplinary analysis thereby ensuring consistency 

in system physics. Comparisons will be made between traditional objective function formulations 

and value formulation to reflect how a value-based approach yields the stakeholder-desired system 

design.  

 

Research question 2 

“Can incorporation of coupling information in value function decomposition in a hierarchically 

decomposed system provide greater potential for system optimization by enabling consistency in 

communication of system value preferences as well as enabling more realistic and informed 

tradeoffs?”  

This research question will be tackled by proposing a Value-Based Systems Engineering (VBSE) 

framework that is founded on VDD and MDO principles that supports system optimization in a 
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hierarchically decomposed system. Couplings will be captured mathematically and incorporated 

into the framework in the context of system decomposition, thereby representing the inherent 

interactions to enable proper tradeoffs. The satellite system example will be used as a test case.  

 

Research question 3 

“Can communication of both value and risk preferences of the stakeholder when uncertainties are 

present enable design decisions that are consistent with the desire of the stakeholder?” 

This question will be addressed by exploiting the complimentary nature of VDD, MDO and DA 

using the VBSE framework and contrasting the effects of miscommunication or no communication 

of risk and value preferences in a hierarchical organization using utility functions, which capture 

both risk and value preferences.  

 

Organization of Dissertation  

The dissertation will be organized starting with the necessary background and then moving into 

defining the satellite example and finally into the core research. In this chapter the motivation 

behind the research and the issue pertaining to the current systems engineering processes were 

discussed. Chapter 2 focuses on all the necessary background needed for the research. Chapter 3 

focuses on describing the satellite model associated with both the conceptual and preliminary 

design phases. Chapter 4 focusses on addressing the issues associated with consistency in system 

preferences using a value function formulation. A value function for the satellite system is created 

in this chapter in addition to other traditional objective function formulations. Chapter 5 focuses 

on addressing the consistency issues associated with communication of system preferences in a 

hierarchically decomposed satellite system in addition to focusing on incorporating coupling 
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information in value function decomposition. Chapter 6 focuses on system optimization in a 

hierarchically decomposed environment by proposing the VBSE framework. Chapter 7 focuses on 

addressing the issues with miscommunication or no communication of risk preferences to enable 

consistent design decision-making. Utility functions are used in this chapter to capture risk and 

value preferences and are used in the proposed VBSE framework to communicate the preferences.  
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CHAPTER 2 

BACKGROUND 

Systems Engineering 

Most modern Large-Scale Complex Engineered Systems (LSCES) are extremely complex 

and multidisciplinary, involving diverse disciplines spanning geographical locations working 

towards a single system design. These elements make it difficult to address the design of LSCES 

as a whole. Systems Engineering (SE) evolved as a discipline during the second half of the 20th 

century as a means to tackle the challenge of design of LSCES thereby enabling the realization of 

successful systems. It is fundamentally concerned with identifying the building blocks of a large 

system design, characterizing the relationships between those blocks or elements and verifying 

that the design is assembled and operated as intended in its environment [17-20]. NASA defines 

the process of SE as identification and quantification of system goals, creation of alternative 

system design concepts, performance of design trades, selection and implementation of the best 

design, verification that the design is properly built and integrated, and post-implementation 

assessment of how well the system meets (or met) the goals [17]. The process of SE can be 

explained in more detail using the classic V-model (Fig. 2.1), which represents the steps in systems 

development lifecycle [18].  
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Figure 2.1: Systems Engineering V-model 

 

The process starts with identifying customer needs and these are then communicated to subsystems 

using system requirements. The subsystem requirements are further broken down and 

communicated to smaller teams that design a component. This is indicated by the ‘Definition, 

Decomposition and Allocation’ phase in Fig. 2.1. This is followed by design implementation, 

integration and verification of the design, where iterations are performed on the design to meet 

stakeholder desires, if they don’t match the preferences. Requirements are used as proxies for the 

actual preferences and are flowed down the hierarchy. In essence, the requirements represent what 

the stakeholder does not want rather than what is wanted. They define a hyperspace in which 

design variables (parameters) must fall, but provide no system level guidance as to a best choice 

within the hyperspace. For example, a very high level requirement based on cost is communicated 

in such a way that the stakeholder does not want a system that exceeds a certain cost. This also 

limits the exploration of other designs that are expensive but yield more profit. In addition to not 
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providing a framework for system optimization, the requirements-driven SE approaches also limits 

design space exploration. The lack of system optimization results in the lower level designers being 

unaware of the impact of subsystem design decisions on the overall system. All this leads to a lack 

of system consistency in preference communication across the organizations involved.    

The conventional systems engineering process incorporates a hierarchical decomposition 

based on a requirement-based framework, as shown in Fig. 2.2. The design process is decomposed 

into smaller sub-systems, which are characterized either by disciplines or by function. This 

decomposition results in creation of couplings/artificial boundaries, which are then addressed by 

using Interface Control Documents [17, 18, 21]. By taking into account the processes in the 

systems engineering approach and by considering the reality of large-scale systems, it is clear that 

the behavior of the couplings is highly complex and cannot be addressed by just using the Interface 

Control Documents (ICD) and that a rigorous mathematical representation of couplings is needed. 

The failure to address physics-based interactions results in a system that is not consistent in 

physics.  

 
 

Figure 2.2: Hierarchical decomposition of a satellite system (Preliminary design) 

 

In addition to inconsistency in communication of system preference and physics, requirements-

driven SE approaches also have the issue of inconsistency in design decision-making when 

uncertainties are present. In the requirements world, uncertainties are treated in the form of 

tolerances and the attitude of design decision-makers towards uncertain designs has not been 
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addressed [13, 22]. The design process associated with LSCES involves decision-making at all 

levels of the hierarchy [1]. LSCES like satellites and aircraft are extremely complex and involve a 

huge number of individuals making decisions throughout the hierarchy of the organization. The 

Boeing Company alone employs 167,865 people as of October 30th, 2014 to serve both their 

commercial and defense sectors [10]. With so many decisions being made by thousands of people, 

it is crucial to have consistency across the system to result in a system that is desired by the 

stakeholder. 

 

 

 

Multidisciplinary Design Optimization 

 

Multidisciplinary Design Optimization (MDO) was promoted in the 1980s as a means of 

enabling optimization of a system as a whole involving couplings between disciplines or 

subsystems of the system, where the impact of couplings was modeled in both analysis and 

optimization.  MDO leverages the couplings between subsystems to create sophisticated 

optimization frameworks to handle systems composed of many subsystems, thereby enabling 

consistency in physics [9]. Initially MDO focused on bi-level hierarchical decompositions [23] 

and evolved into focusing on total system optimizations [11, 24, 25]. To meld MDO to the system 

practices that were in use, requirements were implemented into the frameworks as constraints.  

However, due to the use of an objective function, the designer is able to differentiate between 

feasible designs.  While making MDO applicable for use in practice, the requirements reduce the 

abilities of the optimization process by restricting the design space.  In MDO the choice of 

objective function is often left to component or subsystem teams, rather than reflecting the system 

preference. It should be noted that MDO does not provide a means for generating an objective 
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function but assumes such a function already exists. MDO enables the differentiation among 

feasible designs (those that are bounded by requirements) using the objective function. However, 

the objective function generally is only a proxy for the true system preference (e.g. cost, weight, 

or performance). Often, multi-objective optimization is used as a means of including more than 

one objective in a single function in an attempt to explore trade-offs amongst these objectives [12, 

26].  

 

Design Structure Matrix (DSM) 

One of the useful ways to represent couplings in a system is by using a Design Structure 

Matrix (DSM) as shown in Fig. 2.4 [27-31]. Let us consider a simple coupled system consisting 

of three disciplines (Aerodynamics, Structures and Controls) as shown in Fig. 2.3.  The X’s and 

Y’s in Fig 2.3 represent the design variables and coupling variables (which are a subset of behavior 

variables) respectively.  Design variables are the independent variables associated with each 

discipline that define the design, whereas behavior variables represent the behavior of a particular 

discipline associated with a specific design. Coupling variables represent the interactions between 

these disciplines as indicated by Y’s in Fig. 2.3. The presence of couplings is represented using 

dots in the DSM (Fig 2.4). When the number of interacting disciplines increase, representing the 

interactions using Fig. 2.3 becomes challenging. DSM makes it easier to represent the interactions 

between the subsystems/disciplines when the number of disciplines explode.  
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Figure 2.3: Coupled System 

 
Figure 2.4: Design Structure Matrix (DSM) 

 

 

Multidisciplinary Design Feasible (MDF) Framework  

Past researchers [11, 32-35] have reviewed the many frameworks that have been developed 

in the field of MDO.  This research particularly uses the Multidisciplinary Design Feasible (MDF) 

framework shown in Fig 2.5. MDF [32, 35] is an MDO framework that uses a single system level 

optimizer.  The optimizer distributes design variable values to a system analysis which sends back 

system outputs for use in the optimization method.  The system analysis converges the coupled 

subsystems (SS1, SS2 and SS3) to ensure both subsystem and system consistency for each set of 

design variables determined by the system optimizer. 
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Figure 2.5: Multidisciplinary Design 

Feasible (MDF) Framework 

 

Global Sensitivity Equations (GSE) 

Sensitivity analysis provides a way to determine the effect of a design variable on the behavior of 

the system. This is really useful during post-processing as well as in creating lower-fidelity models 

based on sensitivities. One of the methods that provides a means of  obtaining sensitivities is the 

Global Sensitivity Equation (GSE) method [36].  The GSE method provides a means for obtaining 

system sensitivities in terms of local (disciplinary) sensitivities. The sensitivity information 

obtained from GSE can then be used to construct a linear approximation to the behavior response. 

These system sensitivities are also useful in coupling suspension and reduction [37, 38], and 

subsystem/system optimization. The GSE will be used extensively in this research as it provides a 

cost effective way of computing derivatives as opposed to other methods like finite difference 
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method [39, 40], complex step derivative method [41], adjoint methods [42], which are 

computationally expensive. The Global Sensitivity Equation associated with the simple coupled 

system, provided in Fig. 2.6, is represented in Fig 2.7. Figure 2.7 represents the total or global 

sensitivities of the behavior variables with respect to all the design variables in terms of the local 

or partial derivatives.  

 
Figure 2.6: Simple Coupled System 
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Figure 2.7: Global Sensitivity Equation (GSE) 
 

 

 

 

Value-Driven Design 

 

Recently, a new systems engineering approach (VDD) has been proposed as an alternative 

to traditional systems engineering approaches [7, 43].  VDD enables system optimization by 

capturing the true preferences of the stakeholder through a single value function (an objective 

function) and reducing the requirements placed on the design space thereby providing further 

freedom to the designer [7]. The VDD process is represented in Fig. 2.8, which shows how 

optimization can be performed in the context of VDD.  

Value functions are formed as a function of system characteristics known as attributes. The 

value function has a singular unit (such as dollars or probability of mission success) that directly 
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correlates to the stakeholder’s preference, with attributes being functions of lower level attributes 

and design variables. This formulation of a value function allows for a direct comparison of design 

alternatives from a wide range of systems that share the same set of attributes, as trade-offs are 

inherently captured in the value function through a single mathematical relationship. For example, 

a value function might be constructed as a function of attributes such as speed, cost, range, etc., 

that could lead to the design of two radically different system alternatives, such as a boat or a 

plane. This enables the two alternatives to be compared with one another in the unit of dollars by 

using a value function of maximizing profit. In VDD, the value function is decomposed and 

distributed to lower level subsystems to enable more informed and consistent decision making 

[44]. 

 
 

Figure 2.8: Value-Driven Design Process 

 

One of the important aspects of VDD is aiding the designer in problem formulation. One 

of the focuses of this research is to show how VDD aids the designer in formulating the problem 

to true preferences by capturing the desires in an objective function/value function and by 

reducing/eliminating constraints due to requirements [12].  

 



www.manaraa.com

16 

 

Decision Analysis (DA) 

 

Decision-Making under Uncertainty 

Traditionally, designers use tolerances and factors of safety on the design to address uncertainty. 

These tolerances and safety factors do not have a mathematical foundation and are usually 

determined from past experience and knowledge. Previous researchers have addressed these issues 

by quantifying uncertainties [45-51] and propagating [52-55] them throughout the design by 

aiming at improving the robustness and reliability of the system [22]. In this dissertation, only the 

uncertainties associated with the design variables are considered and are modeled through 

probability distributions. The uncertainties are then propagated using Monte-Carlo Sampling 

(MCS) method [53], where repeated sampling and simulation is performed to obtain the behavioral 

response. Other lower order methods exist that are used in propagating uncertainties.  

Designing with uncertainty in the context of MDO has also been addressed [22]. Mean and 

standard deviation of objective function subject to constraints were used to reflect the design 

preference with uncertainties, both in robust design optimization (RDO) [56-58] and reliability-

based design optimization (RBDO) [22, 58-60]. Decisions made on mean and standard deviations 

are only applicable to distributions that are normal, whereas when the distributions are skewed, a 

more rigorous method is needed to make decisions. In the past research, the risk preference of the 

designer was not captured and was assumed to be risk neutral [13, 22]. Studies have shown that in 

an uncertain design environment an improper communication or no communication of risk 

preferences will result in designers making decisions based on their own risk preference [13].  
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Figure 2.9: Deterministic Design Alternatives 

 

 

It is straightforward to choose between alternatives in a value-based environment if the designs 

are deterministic, where only the value preference of the stakeholder is needed, as shown in Fig. 

2.9. The preferred design is alternative 2 as it has more outcome value than design alternative 1. 

However, when uncertainties are present it becomes challenging in selecting design alternatives. 

It can be seen from the probability distributions provided in Fig. 2.10 that it is not straightforward 

to choose between the design alternatives. Choosing a design alternative under uncertainty requires 

both the value and risk preference of the individual, where the risk preference captures the person’s 

desires concerning uncertainties.   

 

 

 
Figure 2.10: Uncertain Design Alternatives 
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Decision Theory deals with the analysis of the behavior of an individual facing uncertainties. 

Normative or prescriptive decision theory is concerned with how individuals should make 

decisions, whereas descriptive decision theory deals with how decisions are made [61-64]. 

Decision Analysis (DA) is a normative approach that provides a framework for decision-making 

while uncertainties are present using expected utility theory [16]. Other variants exist like 

subjective expected utility theory, which uses subjective probabilities in the form of beliefs 

compared to objective probabilities in expected utility theory [65].  Some of the other normative 

models that are closely related to expected utility theory are Causal decision theory  and evidential 

decision theory [66-68]. On the side of descriptive decision theory, prospect theory deals with how 

choices are made rather than optimal choices using heuristics [69]. This research particularly deals 

with normative decision theory as it deals with optimal choices rather than real life choices.  

 

Expected Utility Theory  

Expected utility theory is a mathematical method that is used to collapse probability distributions 

associated with uncertain outcomes into a single expected utility that is consistent with the risk 

preferences of the individual [70]. In utility theory, the risk preferences of an individual are 

captured using a utility function and the most preferred design has the highest expected utility [16]. 

Equation 2.1 shows an example of a utility function that relates an outcome (V) to the value (U) 

that a person receives.  

 
𝑈(𝑉) = −

1

𝑎
𝑒−𝑎𝑉 

 

 (2.1) 
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Construction of utility functions are outside the scope of this research and readers are 

recommended to read the stated references, which use experimental methods to elicit risk 

preferences [71]. Utility functions that are widely used in literature have been used in this research 

by tweaking the risk parameters to result in a desired risk preference, as will be seen in chapter 7. 

Utility functions are constructed in such a way that they follow the von-Neumann – Morgenstern 

preference axioms [16]. Before delving into risk preferences, it is important to understand the 

following terminologies that characterize the preferences.  

 Expected outcome represents the anticipated measurement of the lottery and is represented 

as shown in Eq. 2.2, where Vi is the measurement associated with alternative i and P(i) is 

the probability of that measurement occurring.  

 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 =  ∑𝑉𝑖 × 𝑃(𝑉𝑖)

𝑖

 

 

 (2.2) 

 Equation 2.3 represents the utility of expected outcome, where U represents the utility 

function as seen in Eq. 2.1. Equation 2.3 represents the player’s value of expected outcome 

if given to him directly.  

 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑈(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑐𝑜𝑚𝑒) 

 

 (2.3) 

 Expected utility, as shown in Eq. 2.4, is the player’s anticipated value of the lottery, which 

captures the preferences of the individual towards risky choices.  

 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =∑𝑈(𝑉𝑖) × 𝑃(𝑉𝑖)

𝑖

 
 (2.4) 
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 Equation 2.5 represents certainty equivalent, which is the minimum measurement that the 

player would accept instead of playing the game.  

 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 𝑈−1(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑈𝑡𝑖𝑙𝑖𝑡𝑦)  (2.5) 

 

Risk preferences 

Generally risk preferences can be grouped into three categories namely risk averse, risk-loving and 

risk neutral. When faced with design alternatives under uncertainty, people tend to be risk averse 

(avoiding risk).  

 

Risk averse 

If an individual’s utility of expected outcome of the lottery is greater than his/her expected utility 

from the lottery, then he/she is said to have a risk averse preference. These individuals avoid risk 

and will always sell the lottery ticket for the expected outcome (likely for less as well) than play 

the lottery. The utility function associated with this preference is concave down as indicated by 

the blue curve in Fig. 2.11  
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Figure 2.11: Risk Preferences 

Risk loving 

An individual is said to have a risk loving preference if the utility of expected outcome is less than 

his/her expected utility from the game. These individuals will always buy the lottery ticket for 

expected outcome (likely for more as well) than not play the lottery. The utility function associated 

with a risk loving individual is represented by the red curve in Fig. 2.11.  

 

Risk neutral 

If an individual has the utility of expected outcome equal to his/her expected utility from the game, 

then he/she is said to have a risk neutral preference. These individuals are indifferent between 

selling the lottery ticket for the expected outcome and keeping the ticket. The risk neutral utility 

function is represented by the green line in Fig. 2.11. 
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CHAPTER 3 

SATELLITE SYSTEM 

 

A geo-stationary commercial communication satellite system has been created as a testbed for the 

research. The fidelity of the models increase in complexity going from the conceptual to 

preliminary design phase. It should be noted that the models created in this chapter are approximate 

and are based on past data and knowledge with some educated assumptions.  

 

Lower Fidelity Satellite Model 

 

The satellite system includes a communication satellite, a set of ground stations and a launch 

vehicle to get the satellite into orbit. A communication satellite is essentially a transmission relay.  

It receives a signal from a transmitting ground station, amplifies the received signal, processes the 

signal, and then transmits the signal back to a different receiving ground station.  The satellite has 

a payload that accomplishes the mission objective of the satellite.  The satellite’s bus consists of 

all the subsystems that aid the satellite in accomplishing the mission objective. The mission 

objective of a television broadcast satellite is to re-transmit the signals received from a ground 

station to another ground station efficiently and effectively.  In this example, the three main 

systems involved are the satellite, ground support, and launch vehicle, with subsystems associated 

with two of these.  Each of the individual subsystems and the payload of the satellite are described 

in Appendix A, as well as the associated analysis equations. 
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Figure 3.1: Discipline-based DSM (Conceptual) 

 

Figure 3.1 shows the discipline-based DSM for the conceptual phase, which has a total of 9 

continuous design variables (Table 3.1), 22 behavior variables (Table 3.2), and 4 system attributes. 

Here, the term discipline-based is used to represent the interaction of disciplinary analysis models 

in the system. Feed-forwards are indicated in the upper right quadrant and feed-backs in the lower 

left. This lower fidelity model of the satellite system is primarily used in Chapter 4 of the research, 

in which the importance of capturing the true stakeholder preferences using a value function is 

demonstrated. 
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Table 3.1: Description of Design Variables 

Design 

Variable 

Description 

fdown Downlink frequency in Hz 

fup Uplink frequency in Hz 

Pt Satellite Transmitter power in Watts 

Pgt Ground Transmitter power in Watts 

Dsat,trans Satellite transmitting antenna diameter in m 

Dsat,rec Satellite receiving antenna diameter in m 

Dground,rec Ground receiving antenna diameter in m 

Dground,trans Ground transmitting antenna diameter in m 

ℰ Energy density of the battery in 
𝑊−ℎ𝑟

𝑘𝑔
 

 

 

Table 3.2: Description of Behavior Variables 

Behavior variable Description 

Mpayload Mass of the payload in kg 

Ppayload Power required by the payload in Watts (W) 

Mtransponders Mass of the transponders in kg 

Mpropellant Mass of the propellant in kg 

MSA Mass of the solar array in kg 

Mbattery Mass of the battery in kg 

Array size Area of the solar array in m2 

MADCS Mass of the ADCS in kg 

PADCS Power required by the ADCS in W 

MRW Mass of the reaction wheels in kg 

Mthermal Mass of the thermal system in kg 

Pthermal Power required by the thermal system in W 

Mbus Mass of the satellite bus in kg 

Ls Length of the bus in m 

rs Radius of the bus in m 

ts Thickness of the satellite bus in m 

Msat,trans Mass of satellite transmitting antenna in kg 

Msat,rec Mass of satellite receiving antenna in kg 

Vprop Volume of the propellant tank in m3 

VBattery Battery volume in m3 

VRW Volume of the reaction wheel in m3 

Vtrans Volume of the satellite transponders in m3 

 

Table 3.3 describes the couplings between the subsystems.  The first column of Table 3.3 depicts 

the receiving subsystems with their corresponding row detailing the behavior variables 
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disseminated to them by the other subsystems.  The header of the column of each behavior variable 

determines the subsystem from which the behavior variable originates.  For example, in Table 3.3 

consider the 3rd row, representing the Power subsystem. The Power subsystem receives the power 

needed by the Payload (Ppayload), ADCS (PADCS), and Thermal (Pthermal) subsystems as inputs.  As 

seen in Fig. 3.1 and Table 3.3, the example satellite system is highly coupled, representative of a 

typical LSCES. 

 

Table 3.3: Description of Couplings 

Sending Payload Propulsion Power ADCS Thermal Structures Launch 

Vehicle Receiving 

Payload - - - - - - - 

Propulsion Mpayload - MSA, 

Mbattery 

MADCS Mthermal Mbus - 

Power Ppayload - - PADCS Pthermal - - 

ADCS Msat,trans 

Msat,rec 

Mpropellant MSA, 

Mbattery, 

Array 

size 

- Mthermal Mbus, Ls, rs, 

ts 

- 

Thermal - - Array 

size 

- - Ls, rs - 

Structures Mpayload, 

Vtrans 

Mpropellant, 

Vprop 

MSA, 

Mbattery, 

VBattery 

MADCS, 

VRW 

Mthermal - - 

Launch 

Vehicle 

Mpayload Mpropellant MSA, 

Mbattery 

MADCS Mthermal Mbus - 

 

 

Higher Fidelity Satellite Model 

In Chapters 5-7, a higher fidelity model of the satellite system is used (associated with a 

preliminary design phase) that corresponds to the organizational decomposition shown in Figure 

3.4. In the higher fidelity model, the satellite system is decomposed into three levels of hierarchy 

and eight major subsystems at level 1 as shown in Fig. 3.4. The eight major subsystems at level 1 

are further decomposed into lower level subsystems as shown in Fig. 3.4. The discipline-based and 
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attribute-based DSM’s are shown in Figures 3.2 and 3.3. The attribute-based DSM represents the 

organizational (team-based) couplings which are present between the different subsystems at 

subsystem level 1 (SL1), the first level of the hierarchy. A total of 36 design variables define the 

satellite system, out of which 14 are continuous and 22 are discrete. Most of the discrete design 

variables define technology choices associated with each of the subsystem. A detailed description 

of the attributes and design variables associated with all the levels of the hierarchy is provided in 

the Appendix. Attributes are critical in this study as the value function comprises of relationships 

of attributes. These attributes that characterize the subsystems may be functions of lower level 

attributes. These attribute might be behavior variables or may themselves be functions of behavior 

variables.    

 

 

Figure 3.2. Discipline-based DSM (Preliminary) 
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Figure 3.3. Attribute-based DSM (Preliminary) 
 

This higher fidelity model is used to demonstrate the necessity of including system sensitivities in 

the decomposition of the value function (Chapter 5), including scorecard representations. It is also 

used in Chapter 6 and 7, in which the proposed Value-Based Systems Engineering (VBSE) 

framework is demonstrated to support system optimization, incorporating VDD, MDO and DA 

principles. 

 

 

 

 

 

 

 

 
 

Figure 3.4: Hierarchical decomposition of a satellite system (Preliminary design) 
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CHAPTER 4 

CONSISTENCY IN SYSTEM PREFERENCES 

 

In traditional systems engineering approaches, the requirements are viewed as a pass/fail 

characteristic, such that if a requirement is violated, the design is a failure. This would necessitate 

a redesign or possible trade-off of requirements across the system, resulting in time and cost delays. 

Also, all designs that pass the requirements are viewed as equal, without an overarching design 

objective. Using pass/fail criteria is insufficient to differentiate between designs that fail slightly 

versus those that fail significantly. These issues are magnified when requirements are based on 

such origins as legacy design knowledge or organization traditions, often restricting the design 

space unnecessarily. 

Present systems engineering procedures make implementation of MDO across the system 

difficult, if not impossible. MDO has found application in industries within lower level teams, 

generally during detailed design. It is also used in conceptual design phases, where an abstraction 

of the actual system is visualized for multi-objective optima. In these applications, the design team 

often chooses an objective function most relevant to the component or subsystem being designed. 

Hence, the problem formulation, while relevant to the component or subsystem, will not provide 

direct insight to the system as a whole. This leads to inconsistency in design preferences across 

the system, which then leads to a final system design that none of the disciplines actually prefer. 

The primary focus of this chapter is to tackle research question 1 by emphasizing why and how 

problem formulation is important in reflecting the true preferences of the stakeholder of the system, 

and ultimately how system consistency can be improved using an MDO augmented VDD 
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formulation. The lower fidelity models associated with the conceptual phase of the satellite system 

design process, defined in Chapter 4, is used here for demonstration purposes.  

In traditional satellite MDO applications, designers are interested in formulating 

optimization problems using mass of the satellite, cost of the satellite or some combination of 

characteristics as the objective function [26, 51, 72-81]. These objectives are chosen as proxies for 

the true preference, such as profit or mission success. It will be demonstrated in this study that 

vastly different systems will be obtained with these proxy objective functions, compared to using 

the true preference directly.  

The optimization software used in this study is built-in MATLAB optimizer [82], validated 

using independently coded C++ optimization algorithms.  The optimization method used in the 

various MDO frameworks for constrained problems (traditional objective function/requirement 

formulations) is the MATLAB function ‘fmincon,’ using the interior-point algorithm.  The 

constrained problem solutions are verified using the heuristic optimization algorithm, Particle 

Swarm Optimization (PSO) [83, 84], with a penalty function to account for constraint violations 

and a neighborhood approach to increase the likelihood of finding the global optimum [85, 86]. 

PSO is used for the value function formulation due to the need for a robust method as the design 

space is non-restricted and more complex than the traditional proxy objective functions 

investigated. 

 

Traditional Objective Function Formulations (Cases 1-6) 

 

The traditional satellite MDO problem formulations using proxies as objective functions 

are first examined, followed by a value function problem formulation. Six different examples of 
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traditional satellite MDO objective function/requirement formulations are presented, as outlined 

in Table 4.1. For each objective function, two cases are explored pertaining to whether the launch 

vehicle has been predetermined or not.  

 

Table 4.1: Traditional objective function 

formulations 

Case Objective Function 
Predetermined 

Launch Vehicle 

1 Minimize Mass Yes 

2 Minimize Mass No 

3 Minimize Total Cost Yes 

4 Minimize Total Cost No 

5 Multi-Objective Yes 

6 Multi-Objective No 

7 Value Function No 

 

 

Traditional objective function and requirements: Cases 1 and 2 - Minimize mass 

In traditional satellite system design formulations, a common objective function is that of 

the minimization of the mass of the satellite [26, 51, 72-74, 76, 77, 87].  This objective function 

has been traditionally used in aerospace systems due to its relationship with the cost of the system.  

Generally, as the mass of an aerospace system increases the cost of the system increases.  This 

relationship stems from the heavy financial burden of placing each pound of payload into orbit 

[88].  The constraints used in the traditional proxy objective function formulation are 

representations of the desires of the stakeholder, indicating regions of the design space that they 

have deemed infeasible.  There are many origins of constraints, some of which (especially for 

incremental designs) are legacy design knowledge and organization traditions, providing the 

stakeholder or designer a starting point in constraint determination. 
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Several constraints are created for the satellite system example to reflect the traditional 

system design practice.  Two scenarios concerning the launch vehicle for the satellite are 

considered, one in which the launch vehicle is predetermined and one in which it is not.  When the 

launch vehicle is predetermined, many constraints must be considered.  These constraints represent 

the stakeholder’s desire for the satellite system to be delivered into orbit by a particular launch 

vehicle.  These constraints relate to the launch vehicle’s payload capability in terms of both mass 

and size.  For the example, one requirement formed is that the sum of mass of all the subsystems 

is constrained to be less than 1000 kg.  Also, the array size must be less than 40 m2 to fit in the 

payload envelope of the launch vehicle and the dimensions of the satellite bus must be less than 

the payload envelope diameter and length.  The signal to noise ratio constraint exists not because 

of a launch requirement but rather a performance requirement. 

Apart from inequality constraints, side constraints (side bounds on design variables) are 

imposed on the example problem. These side constraints are derived from common satellite system 

design practices [89].  The uplink and downlink frequencies are bounded within the High 

Frequency (HF) to Very High Frequency (VHF) range.  The satellite transmitter power (Pt) is 

bounded in the range of 300-3000 W, which for this satellite corresponds to 10-100 onboard 

transponders, as Pt is directly proportional to the number of onboard transponders (the power per 

transponder is 30 W).  A wider bounding range is used for ground transmitter power (Pgt) due to 

the flexibility associated with the ground equipment.  The diameters of the satellite antennae and 

the ground antennae are constrained in accordance to industry standards.  The energy density of 

the satellite battery is constrained based on typically used batteries. 
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 𝑓𝑖𝑛𝑑  𝑿 = [𝑓𝑑𝑜𝑤𝑛, 𝑓𝑢𝑝, 𝑃𝑡 , 𝑃𝑔𝑡, 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠, 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐 , 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 , 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠, 휀]
T 

𝑀𝑖𝑛   𝑓(𝑿, 𝒚) = 𝑀𝑡𝑜𝑡𝑎𝑙 

𝑠. 𝑡.    𝑔1: 10𝑑𝐵 − 𝑆𝑁𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ≤ 0 

𝑔2: 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 +𝑀𝑝𝑜𝑤𝑒𝑟 +𝑀𝐴𝐷𝐶𝑆 + 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 − 1000 ≤ 0 

𝑔3: 𝐴𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 − 40𝑚
2 ≤ 0 

𝑔4: 𝐿𝑠 − 5𝑚 ≤ 0 

𝑔5: 𝑟𝑠 − 2.5𝑚 ≤ 0 

1 𝐺𝐻𝑧 ≤ 𝑓𝑑𝑜𝑤𝑛  ≤ 100 𝐺𝐻𝑧 

1 𝐺𝐻𝑧 ≤ 𝑓𝑢𝑝  ≤ 100 𝐺𝐻𝑧 

300 𝑊 ≤ 𝑃𝑡  ≤ 3000 𝑊 

300 𝑊 ≤ 𝑃𝑔𝑡  ≤ 30000 𝑊 

0.5𝑚 ≤ 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠  ≤ 2.5𝑚, 

0.5𝑚 ≤ 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐  ≤ 2.5𝑚 , 

2 𝑚 ≤ 𝐷𝑔𝑟𝑜𝑢𝑛𝑑.𝑟𝑒𝑐  ≤ 20𝑚 

2 𝑚 ≤ 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠  ≤ 20 𝑚 

35
𝑊 − ℎ𝑟

𝑘𝑔
 ≤ 휀 ≤ 200

𝑊 − ℎ𝑟

𝑘𝑔
 

(4.1) 

 

Design case 1: Minimize mass with specified launch vehicle 

The formal optimization statement in standard notation for the traditional Case 1 is shown 

in Eq. (4.1), which includes all of the requirements described previously.  The optimal system 

design, as well as the associated objective functions and inequality constraint values for the 
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traditional proxy objective function formulation Cases 1 and 2, are shown in Table 4.2.  It is shown 

that some of the design variables are driven to either their upper or lower bounds at the optimum.  

Variables not driven to their bounds do have the possibility of influencing the design.  For example, 

the frequencies are not directly related to system mass (i.e. a change in only frequency does not 

correlate directly to a change in mass) but are indirectly related through the signal to noise ratio, 

the gain and the antenna diameters.  Similar relationships can be observed for the ground antennae 

diameters and the ground transmitter power. The values shown in Table 4.2 for the design variables 

which are not at a bound are equivalent to their initial optimization algorithm settings.  Design 

variables that only impact constraints will remain at their initial values until the constraint becomes 

active.  Hence, a multitude of optimal solutions will result based upon the initial values chosen.  

This example illustrates a flaw in the traditional formulation, where as long as a preference 

represented by a constraint is satisfied, there is no need to improve the system characteristics 

captured solely by that constraint.  For example, all Signal to Noise Ratios above 10db are viewed 

as acceptable, where in actuality the signal will be impacted with differing acceptable ratios.  The 

bound to which the design variables that reside on a side constraint are driven correlates to the 

design variable’s relationship to the mass of the system, as the objective function is simply 

concerned with minimizing mass.  For example, smaller diameter antennas and lower transmitter 

power (resulting in less transponders on board) result in a system with less mass. 

The traditional proxy objective function formulation demonstrates the influence that 

constraints have on a design.  The constraints do not allow exploration into the infeasible region 

and provides a solution that doesn’t actually capture the true preference of the stakeholder.  The 

objective function captures a system characteristic (mass), that is related to an economic system 

characteristic (cost), which is not the stakeholder’s true preference (such as maximize profit). 
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Table 4.2. Optimal Design for Cases 1 and 2 

 

Cases 1 and 2   

Design 

Variable 

Initial 

Values 

Optimal 

Values 

 Constraints and 

Objective 

function 

Values 

fdown 5 GHz 5 GHz  Case 1 

fup 5 GHz 5 GHz  F 422.9 

Pt 500 W 300 W  g1 -10.97 

Pgt 500 W 500 W  g2 -577 

Dsat,trans 1 m 0.5 m  g3 -22.3 

Dsat,rec 1 m 0.5 m  g4 -4.04 

Dground,rec 5 m 5 m  g5 -2.18 

Dground,trans 5 m 5 m  Case 2 

ℰ 50 
𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 

 
F 422.9 

    g1 -10.9 

 

Design case 2: Minimize mass without specified launch vehicle 

The problem formulation associated with Case 2 is identical to Case 1 with the exception 

that the design of the satellite is no longer constrained by the launch vehicle requirements.  For 

this case, it is assumed that a launch vehicle is always available that can accommodate the optimal 

satellite design.  To represent this case the problem represented in Eq. 4.1 is modified by 

eliminating the inequality constraints g2-g5, which capture the requirements imposed by the 

preselected launch vehicle.  Table 4.2 represents the optimal design of the satellite using the 

formulation of Case 2 (Eq. (4.1) without g2-g5).  It can be seen from Table 4.2 that even after 

eliminating the constraints, the optimal design is the same as Case 1.  The optimal designs are 

identical due to the restrictions that the side constraints are placing on the design space and the 

inactivity of the predetermined launch vehicle constraints.  Case 1 and 2 exemplify a downfall of 



www.manaraa.com

35 

 

traditional formulations in which the constraints restrict exploration of the design space.  In these 

cases of traditional use of requirements, design variables that are primarily related to the 

determination of a constraint variable, such as signal to noise, may have a range of optimal values 

which produce a satisfied constraint and identical objective function values. 

 

Traditional objective function and requirements: Cases 3 and 4 - Minimize cost 

The objective functions of Cases 1 and 2 use mass as an approximation of cost.  To explore 

the impact that a more accurate cost model has on the design of the example satellite system, 

empirical cost relationships are constructed [89] and used to form an objective function based on 

cost.   Cost is commonly used as an objective function in the satellite industry, as is mass.  While 

this cost model is still only an approximation, it captures much of the complexity of a realistic 

system cost model.  The formulation for the system design incorporating the cost model is shown 

in Eq. 4.2.   

 

 𝑓𝑖𝑛𝑑  𝑿 = [𝑓𝑑𝑜𝑤𝑛, 𝑓𝑢𝑝, 𝑃𝑡 , 𝑃𝑔𝑡, 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠, 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐 , 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 , 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠, 휀]
T 

𝑀𝑖𝑛   𝑓(𝑿, 𝒚) = 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 
𝑠. 𝑡.    𝑔1: 10𝑑𝐵 − 𝑆𝑁𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ≤ 0 

𝑔2: 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 +𝑀𝑝𝑜𝑤𝑒𝑟 +𝑀𝐴𝐷𝐶𝑆 + 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙  + 𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 − 1000 ≤ 0 

𝑔3: 𝐴𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 − 40𝑚
2 ≤ 0 

𝑔4: 𝐿𝑠 − 5𝑚 ≤ 0 

𝑔5: 𝑟𝑠 − 2.5𝑚 ≤ 0 

1 𝐺𝐻𝑧 ≤ 𝑓𝑑𝑜𝑤𝑛  ≤ 100 𝐺𝐻𝑧 

1 𝐺𝐻𝑧 ≤ 𝑓𝑢𝑝  ≤ 100 𝐺𝐻𝑧 

300 𝑊 ≤ 𝑃𝑡  ≤ 3000 𝑊 

300 𝑊 ≤ 𝑃𝑔𝑡  ≤ 30000 𝑊 

0.5𝑚 ≤ 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠  ≤ 2.5𝑚, 
0.5𝑚 ≤ 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐  ≤ 2.5𝑚 , 
2 𝑚 ≤ 𝐷𝑔𝑟𝑜𝑢𝑛𝑑.𝑟𝑒𝑐  ≤ 20𝑚 

2 𝑚 ≤ 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠  ≤ 20 𝑚 

35
𝑊 − ℎ𝑟

𝑘𝑔
 ≤ 휀 ≤ 200

𝑊 − ℎ𝑟

𝑘𝑔
 

(4.2) 



www.manaraa.com

36 

 

 

The cost based objective function is used for both Cases 3 and 4, with the difference 

between the cases resulting from the elimination of launch vehicle constraints, as was done with 

Cases 1 and 2.  Given that the cost model takes into account the cost of the launch vehicle, the 

launch vehicle constraints here are associated with a maximum launch vehicle (in terms of payload 

size and mass), that the stakeholder wishes to use based on a belief that larger launch vehicles 

would be too costly.  The system cost equations are given in Appendix A.  These equations take 

into account various relationships between the design variables and the capital necessary to achieve 

the system design.  For example, the system cost model takes into account the direct relationship 

between increasing ground transmitter power and increasing cost due to the equipment necessary 

to achieve the increase, a direct relationship that was not captured in the minimize mass objective 

function of Cases 1 and 2.  Costs including maintenance and end of life product disposal are not 

included in this model, but could be added if desired.  Table 4.3 represents the optimal design and 

the values of the objective function and constraints that were obtained using Eq. (4.2).  Table 4.3 

also represents the results for Case 4 where the maximum launch vehicle is not predetermined.   

The results of Cases 3 and 4 are very similar to that of Cases 1 and 2, with the difference 

reflected in the ground antennae diameters and the ground transmitter power.  As was true with 

Cases 1 and 2, the side constraints of Cases 3 and 4 are the dominating constraints, making the 

elimination of the launch vehicle constraints a non-factor for this specific satellite design.  In Cases 

3 and 4, the ground antennae construction and material costs are taken into account, resulting in 

the ground antennae diameters being driven towards their lower bounds.  This was not seen in 

Cases 1 and 2 as the ground antennas had no impact on the mass of the satellite.  The ground 

transmitter power is driven to its lower bound due to the lower cost in purchasing equipment to 
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supply and handle lower power demands.  The similarities between the solutions for Cases 1 and 

2, and Cases 3 and 4 reveal that the use of an approximate cost model based on system mass has 

merit.  The mass of the system does have a large impact on system cost, as reflected in the cost 

model used in Cases 3 and 4.  However, while the mass objective function used in traditional 

satellite design practices can be shown to have merit in approximating system cost, the question 

must be raised again - is minimizing cost the true preference of the stakeholder? 

 

Table 4.3. Optimal Design for Cases 3 and 4 

 

Cases 3 and 4   

Design Variable 
Initial 

Values 

Optimal 

Values 

 Constraints and 

Objective function 
Values 

fdown 5 GHz 5 GHz  Case 3 

fup 5 GHz 5 GHz  F 9.2e+6 

Pt 500 W 300 W  g1 -2.76 

Pgt 500 W 300 W  g2 -577 

Dsat,trans 1 m 0.5 m  g3 -22.33 

Dsat,rec 1 m 0.5 m  g4 -4.04 

Dground,rec 5 m 2 m  g5 -2.18 

Dground,trans 5 m 2 m  Case 4 

ℰ 50 
𝑊−ℎ𝑟

𝑘𝑔
 

200 
𝑊−ℎ𝑟

𝑘𝑔
  

F 9.2e+6 

  
  

g1 -2.76 

 

Traditional objective function and requirements: Cases 5 and 6 - Multi-objective 

formulation 

 Another common technique used in traditional MDO formulations, and the engineering 

industry at large, is to create a multi-objective function.  A multi-objective function allows a 

stakeholder to express his preferences on multiple characteristics of the system.  Here, a multi-
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objective function is formed that captures mass and transmitter power, and is stated in Eq. 4.3 for 

Cases 5 and 6.   

 𝑓𝑖𝑛𝑑  𝑿 = [𝑓𝑑𝑜𝑤𝑛, 𝑓𝑢𝑝, 𝑃𝑡 , 𝑃𝑔𝑡, 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠, 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐 , 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 , 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠, 휀]
T 

𝑀𝑖𝑛   𝑓(𝑿, 𝒚) = 𝑤1 ×𝑀𝑡𝑜𝑡𝑎𝑙 − 𝑤2 × 𝑃𝑡 

𝑤ℎ𝑒𝑟𝑒:𝑤1 𝑎𝑛𝑑 𝑤2 𝑎𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 

𝑠. 𝑡.    𝑔1: 10𝑑𝐵 − 𝑆𝑁𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ≤ 0 

𝑔2: 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 +𝑀𝑝𝑜𝑤𝑒𝑟 +𝑀𝐴𝐷𝐶𝑆 + 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙  + 𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 − 1000 ≤ 0 

𝑔3: 𝐴𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 − 40𝑚
2 ≤ 0 

𝑔4: 𝐿𝑠 − 5𝑚 ≤ 0 

𝑔5: 𝑟𝑠 − 2.5𝑚 ≤ 0 

1 𝐺𝐻𝑧 ≤ 𝑓𝑑𝑜𝑤𝑛  ≤ 100 𝐺𝐻𝑧 

1 𝐺𝐻𝑧 ≤ 𝑓𝑢𝑝  ≤ 100 𝐺𝐻𝑧 

300 𝑊 ≤ 𝑃𝑡  ≤ 3000 𝑊 

300 𝑊 ≤ 𝑃𝑔𝑡  ≤ 30000 𝑊 

0.5𝑚 ≤ 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠  ≤ 2.5𝑚, 

0.5𝑚 ≤ 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐  ≤ 2.5𝑚 , 

2 𝑚 ≤ 𝐷𝑔𝑟𝑜𝑢𝑛𝑑.𝑟𝑒𝑐  ≤ 20𝑚 

2 𝑚 ≤ 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠  ≤ 20 𝑚 

35
𝑊 − ℎ𝑟

𝑘𝑔
 ≤ 휀 ≤ 200

𝑊 − ℎ𝑟

𝑘𝑔
 

(4.3) 

 

The constraints for the multi-objective function formulation are identical to the previous 

cases expressed in Eq. 4.1 and Eq. 4.2.  The multi-objective function is the minimization of the 
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mass of the system as well as the maximization of the transmitter power, two system objectives 

that are representations of cost and revenue, upon which the stakeholder has preferences.  

Transmitter power is related to revenue proportionally.  As the transmitter power is increased, 

more transponders can be accommodated on the satellite, enabling the stakeholder to increase the 

number of customers and hence, increase revenue.  Due to the objectives captured in multi-

objective functions typically having non-consistent units and the stakeholder possibly having 

preferences on each objective’s overall importance, weights are associated with the objectives.  

These weights are difficult to determine as they are typically associated with competing 

stakeholder preferences.  The optimal designs for this formulation (assuming a predetermined 

launch vehicle), the constraints as well as the objective function values, are seen in Table 4.4.  In 

this table there are multiple sets of weights that are explored, varying the impact that the two 

system objectives have on the multi-objective function.  These normalized weights also indicate a 

stakeholder who is uncertain of the importance of each objective compared to the other.  In all of 

the various weight configurations the optimal design falls on constraints, which is typical for 

traditional MDO formulations. 

The results seen in Table 4.4 demonstrate the balancing act that is occurring between the 

two diametrically opposed objectives of the multi-objective function.  While the multi-objective 

function is trying to minimize mass, it is also trying to maximize transmitter power.  As transmitter 

power increases the mass of the satellite increases due to the larger components needed to handle 

the increased power draw and supply.  When the transmitter power objective has a significant 

associated weight, such as for weight set [0.1, 0.9], the optimal design is for the transmitter power 

to be increased until it is constrained.  For the multi-objective functions with transmitter power 

objectives of significant weight (as seen with weight sets [0.1, 0.9], [0.25, 0.75] and [0.5, 0.5]), 
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the inequality constraint limiting further multi-objective function improvement is g3 (related to the 

array size limitation due to the predetermined launch vehicle).  As the satellite transmitter power 

design variable grows, the system is required to generate the power demanded.  The power is 

generated from solar arrays.  Therefore, increased power demands result in a need for increased 

solar panel area represented by the array size. 

 

Table 4.4. Optimal Design for Case 5 

 

 

Design 

Variable 

Values 

W1 = 0.1;  

W2 = 0.9 

W1=0.25; 

W2 = 0.75 

W1 = 0.5; 

W2 = 0.5 

W1=0.636; 

W2 =0.364 

W1=0.75; 

W2 = 0.25 

W1=0.9; 

W2 = 0.1 

fdown 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 

fup 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 

Pt 1202.94W 1202.94 W 1202.94 W 541.7047W 300 W 300 W 

Pgt 500 W 500 W 500 W 500 W 500 W 500 W 

Dsat,trans 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m 

Dsat,rec 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m 

Dground,rec 5 m 5 m 5 m 5 m 5 m 5 m 

Dground,trans 5 m 5 m 5 m 5 m 5 m 5 m 

ℰ 200 
𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 

F and g’s 
      

F -987.4 -664.11 -125.28 158.72 242.24 350.69 

g1 -10.97 -10.97 -10.97 -10.97 -10.97 -10.97 

g2 -47.62 -47.62 -47.62 -440.39 -577.00 -577 

g3 493.7e-12 1.3e-09 49.9e-09 -16.35 -22.32 -22.32 

g4 -3.74 -3.74 -3.74 -3.95 -4.04 -4.04 

g5 -2.08 -2.08 -2.08 -2.15 -2.18 -2.18 

 

 As the weight associated with the transmitter power is reduced, the mass objective becomes 

more influential, driving the transmitter power design variable down in order to decrease the mass.  

The driving down of the transmitter power is seen with weight set [0.636, 0.364] where g3 is no 

longer active and the transmitter power is reduced from the value of 1202.94 Watts that are seen 

in weight sets [0.1, 0.9], [0.25, 0..75] and [0.5, 0.5].  This is the first traditional proxy objective 
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function in the research that does not reside completely on a set of constraints, as the transmitter 

power is not at a side constraint and the inequality constraints are inactive.  Eventually, the 

objective associated with mass becomes so influential that the system is once again completely 

bounded by constraints, as the transmitter power is driven to its lower bound of 300 Watts, as seen 

in weight sets [0.75, 0.25] and [0.9, 0.1].  In all weight sets examined for the multi-objective 

functions, the design variables that are only impacting the mass of the satellite (satellite antennae 

diameters and battery energy density) are driven to their bounds in order to reduce the mass.  

Design variables that are not captured in the multi-objective function and are not affected by the 

active constraints (frequencies, ground transmitter power and ground antennae diameters) remain 

at their initial values, highlighting once again the possibility of a range of optimal designs with 

traditional MDO formulations. 

In Case 6, the multi-objective function problems are examined without the constraints 

formed from a predetermined launch vehicle, with the results shown in Table 4.5.  Similar results 

are observed to that of Case 5.  A difference is seen when the transmitter power objective has 

significant weight (as seen with weight sets [0.1, 0.9], [0.25, 0.75] and [0.5, 0.5]).  The transmitter 

power is no longer restricted by a predetermined launch vehicle inequality constraint, but is now 

restricted by its upper bound.  This results in the optimal designs under the associated weight sets 

to have transmitter powers of 3000 Watts compared to 1202.94 Watts, as seen in Case 5.  The 

multi-objective function values associated with these weight sets in Case 6 are significantly 

improved compared to the more restrictive Case 5.  For example, for weight set [0.1, 0.9] the multi-

objective function value for Case 6 is -2501.18, compared to Case 5’s multi-objective function 

value of -987.4087, highlighting the impact of constraints on design space exploration.  With this 

improvement comes the understanding that the cost of the launch vehicle was not captured in this 
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multi-objective function, leading to a design when the inequality constraints are removed that 

produces an improved multi-objective function value, but may be less preferred by the stakeholder 

in accordance to his true preference (such as maximizing profit) due to the cost of a larger launch 

vehicle. 

Table 4.5. Optimal Design for Case 6 

 

 

Design 

Variable 

Values 

W1=0.1;  

W2 = 0.9 

W1 = 0.25; 

W2 = 0.75 

W1 = 0.5; 

W2 = 0.5 

W1=0.636; 

W2 = 0.364 

W1=0.75; 

W2 = 0.25 

W1=0.9; 

W2 = 0.1 

fdown 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 

fup 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 

Pt 3000 W 3000 W 3000 W 541.7047W 300 W 300 W 

Pgt 500 W 500 W 500 W 500 W 500 W 500 W 

Dsat,trans 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m 

Dsat,rec 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m 

Dground,rec 5 m 5 m 5 m 5 m 5 m 5 m 

Dground,trans 5 m 5 m 5 m 5 m 5 m 5 m 

ℰ 200 
𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 200 

𝑊−ℎ𝑟

𝑘𝑔
 

F and g’s 
      

F -2501.18 -1752.95 -505.9 158.72 242.24 350.69 

g1 -10.97 -10.97 -10.97 -10.97 -10.97 -10.97 

 

 

A major complication concerning multi-objective function formulations is the 

determination of the weights of objectives which do not have consistent units.  In this case, the 

designer is trying to determine a single value for a design in terms of an objective that may be 

represented by the units of kilograms and an objective that may be represented by the units of 

watts.  Furthermore, the multi-objective function, while incorporating multiple aspects of the 

system, still succumbs to the same concerns associated with traditional MDO formulations, 

pertaining to constraints and capturing the true preference of the stakeholder.   

 



www.manaraa.com

43 

 

Traditional objective function formulations discussion 

Traditional proxy formulations, such as in Cases 1 and 2, have a tendency of focusing on 

a few key characteristics of a system to approximate a larger objective (such as using satellite mass 

as an approximation for system cost).  This narrowing of focus to key characteristics is also seen 

in the multi-objective function formulation.  Recall that mass was used as an approximation of 

cost and transmitter power was an approximation of revenue.  At times these approximations can 

be relatively accurate and the focus on key characteristics allows for the objective functions to be 

easily interpreted by designers.  For an objective function such as mass it is easy for the designer 

to visualize how to achieve the objective in terms of component attributes and design variables.  A 

further benefit of traditional formulations is found in multi-objective functions, which enable 

stakeholder preferences to be captured for multiple system characteristics (e.g. mass and 

transmitter power).  The constraints were shown in the example to impact the satellite design 

greatly; however, they are easy for the stakeholder to disseminate down a hierarchical 

organization.  This dissemination is conducted using traditional system engineering approaches 

such as the waterfall process [90]. 

While providing benefits to the designer, traditional formulations also have drawbacks in 

determining the best system design.  The use of system characteristics to approximate the true 

stakeholder preference leads to optimized designs that are inconsistent with what the stakeholder 

truly desires.  For example, a preference to minimize mass does not encapsulate the stakeholder’s 

true preference in a commercial setting of maximizing profit.  Another downfall of traditional 

formulations is that multi-objective functions, formed from objectives with inconsistent units, 

require a process for determining the correct weights to associate with each objective.  To form a 

useful multi-objective function, the weights must relate the objectives to a single unit.  As seen in 
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all of the traditional proxy objective formulation design cases in the previous sections, the 

constraints play a major role in the optimal result, and in fact were the drivers in the optimization.  

This leads the designer to design within a restricted space, eliminating designs that may produce a 

higher objective function value.  Clearly, a method that enables proper capture of stakeholder 

preference together with greater design freedom would be an advantage. 

 

Value Function Formulation: Case 7 

 

As mentioned in the background section, VDD aids the designer in capturing the true 

preferences of the stakeholder through a single value function, which can be used as an objective 

function in MDO frameworks [9]. Since the satellite being designed is a commercial television 

communication satellite, the driving desire behind the industrial organization designing the 

satellite is to maximize profit.  Hence, the revenue, cost, and profit equations used to create the 

value function are in the units of U.S. dollars, consistent with the stakeholder’s preference of 

maximizing profit.  System profit can be obtained by subtracting the total cost of the system from 

the total revenue. The formal optimization statement using the value function is seen in Eq. 4.4 

which has no constraints.  While it is recognized that in some industries a complete elimination of 

constraints is not possible, particularly with regards to those pertaining to policy, VDD’s goal is 

to reduce as many constraints as possible, incorporating those preferences that have traditionally 

been communicated by requirements into the value function through relationships to the attributes.  

This incorporation provides a more meaningful preference communication (i.e. through a value 

function) than the discrete acceptable or unacceptable preference communicated through 

requirements.  In the VDD approach to system engineering, all designers are given the value 
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function to enable decisions consistent with that of the stakeholder. Next chapter will deal with the 

decomposition and distribution of value function to lower tiers in a hierarchically decomposed 

complex system. Requirement based communication simply requires the lower level designer to 

determine a design that fits within a restricted space, not providing the information to the designer 

that is necessary to make meaningful decisions between designs within that space. The analysis 

associated with the value function formulation in Eq. 4.4 is presented here for completeness and 

to demonstrate how constraints (i.e. requirements) can be reposed in terms of attribute relationships 

to a value function. 

 

 𝑓𝑖𝑛𝑑  𝑿 = [𝑓𝑑𝑜𝑤𝑛, 𝑓𝑢𝑝, 𝑃𝑡, 𝑃𝑔𝑡, 𝐷𝑠𝑡, 𝐷𝑠𝑟 , 𝐷𝑔𝑟 , 𝐷𝑔𝑡 , 휀]
𝑇  

𝑀𝑖𝑛   𝑓(𝑿, 𝒚) = −𝑁𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 

(4.4) 

 

The approximate cost model of the satellite system (Appendix A) used in Cases 3 and 4 is 

used here. An approximate revenue model of the satellite is developed here based on the number 

of useful transponders onboard the satellite with the incorporation of market demand for the 

number of transponders.  The market also dictates the leasing price per transponder.  A maximum 

leasing price of $1.1M per transponder per year is assumed, which is consistent with similar 

approximations [91].  With this revenue statement, the inclination might be to infinitely increase 

the number of transponders, however the utilization rate of the transponders [91-94] also becomes 

an important factor in the statement.  A market demand of 50 transponders is assumed and the 

transmitter power needed per transponder is assumed to be 30 watts, consistent with ranges 

discussed in [89].  The satellite has an operational life of 10 years and over that time a percentage 

of transponders are anticipated to fail each year, reducing the usable transponders available each 
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year.  To capture this, a lower yearly revenue will result for each consecutive year as transponders 

fail. This can be seen in Eq. (4.5), where NLeased represents the number of leased transponders for 

year y, FR represents failure rate (2% per year) and NOnBoard represents number of on board 

transponders. Equation 4.5 represents the number of leased transponders each year in terms of the 

failure rate and the number of onboard transponders.  

 
𝑁𝐿𝑒𝑎𝑠𝑒𝑑,𝑦 = {

𝑁𝑂𝑛𝐵𝑜𝑎𝑟𝑑 ∗ (1 − 𝐹𝑅)
𝑦 𝑁𝑂𝑛𝐵𝑜𝑎𝑟𝑑 ∗ (1 − 𝐹𝑅)

𝑦 ≤ 50

50 𝑁𝑂𝑛𝐵𝑜𝑎𝑟𝑑 ∗ (1 − 𝐹𝑅)
𝑦 > 50

 

𝑤ℎ𝑒𝑟𝑒: 

𝑁𝑂𝑛𝐵𝑜𝑎𝑟𝑑 = (
𝑃𝑡
30
) 

(4.5) 

 

The revenue is also dependent on the composite signal to noise ratio (SNRcomposite). A high 

SNRcomposite results in a high quality signal, culminating in customers willing to pay more to lease 

a transponder.  A composite SNR below 5db results in an unusable signal, generating zero market 

demand and, hence, zero revenue.  A composite SNR above 30db is deemed excessive and 

unnecessary, resulting in constant revenue above this value, since customers are not willing to 

spend more on higher signal quality which is unusable to them. This is captured using an unitless 

parameter called signal quality ratio (QR) as seen in Eq. (4.6). The range for usable signal quality 

is assumed in this research.  

 

𝑄𝑅 = {

0 𝑆𝑁𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ≤ 5

𝑆𝑁𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒/30 5 < 𝑆𝑁𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ≤ 30

1 𝑆𝑁𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 > 30
 

 

(4.6) 

 

The yearly revenue, as a function of the number of leased transponders (which is a function of 

transmitter power, Pt) per year and composite SNR is shown in Eq. (4.7). For the lower fidelity 
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satellite model with 9 design variables, the number of transponders is assumed to be continuous 

and not discrete.  Equation 4.7 represents a linear relationship between the number of leased 

transponders per year and the yearly revenue, taking into account the failure rate of the 

transponders and the saturation points due to market demands.  The quality of the signal is also 

incorporated into the yearly revenue through the signal quality ratio.  Consideration of the market 

demand (50 transponders) results in constant revenue once the satellite has reached this saturation 

point.   

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑦 = 𝑁𝐿𝑒𝑎𝑠𝑒𝑑,𝑦 ∗ 1.1 ∗ 10
6 ∗ 𝑄𝑅 (4.7) 

 

 
Figure 4.1. Total Revenue vs. Transponders with 

Composite SNR = 20db 
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Figure 4.2. Total Revenue vs. Transponders with 

Composite SNR = 10db 
  

Graphical representations of the revenue model associated with the number of transponders 

are seen in Figs. 4.1 and 4.2, with different composite SNR values.  In these figures, the revenue 

is the total revenue over the course of 10 years (simply the summation of the yearly revenues). 

Due to the incorporation of a failure rate, the peak revenues associated with the number of on board 

transponders greater than 50, the market saturation point.  In a formal industrial setting, the revenue 

equation would be highly modified and would evolve into a significantly more complex function.  

However, for the purpose of this demonstration and comparison, the key aspects of revenue have 

been captured. 

The profit for the satellite system is simply the total revenue less the cost, as shown in Eq. 

4.8. In order to determine the net present value of future money, a discount rate is applied to future 

revenues [95].  

 

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑦 − 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡

𝑂𝐿

𝑦=1

 

 

(4.8) 
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 A discount rate is not applied to total cost as the cost is assumed to occur in year 0.  The 

revenues are received in years 1 through 10 and therefore are discounted to present worth.  The 

incorporation of the discount rate (rd) is seen in the net present profit calculation of Eq. 4.9, where 

OL represents operational lifetime (10 years).  The discount rate is chosen for the satellite example 

to be 10%, a rate that is within the typical range of 10-20% for industrial firms [96].  The 

incorporation of time preference in the form of a discount equation produces a net present profit 

that is less than the total profit of the system due to the delay in revenue flow. 

 

𝑁𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 = −𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 + ∑
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑦
(1 + 𝑟𝑑)𝑦

𝑂𝐿

𝑦=1

 

 

(4.9) 

When constructing a value function, a deep comprehension of the system and subsystems is needed 

to understand the impact each design variable and attribute has on the cost and revenue.  

Unanticipated behavior of the system occurs when a cost or revenue driver is missing, and is 

detected when the optimal system tends to drive towards unattainable variable values. This is a 

situation equivalent to having missing or contradictory requirements in the present system 

engineering approaches. It is critical that all influential system characteristics be captured in the 

value function, which can result in a complex function.  The value function is deemed sufficiently 

accurate when the rank order of design alternatives due to the value function is equivalent to the 

rank order due to the stakeholder’s preference.  In the case of the satellite example, this translates 

to the desire to achieve the most net present profit. 

The optimal design for the satellite system using the value function defined is shown in 

Table 4.6, as well as the value function and some of the system attribute values.  Without 

constraints placed on the design space, the designer, using the value function formulation, is able 

to perform an unrestricted search for the best design.  In the value function formulation for the 
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satellite problem there is a singular optimum, unlike the range of optima that resulted in Cases 1-

6. The results of the value function formulation are driven to maximize the system’s net present 

profit, contrary to the traditional satellite MDO formulations that minimized cost or maximized a 

pseudo profit, as characterized by cost and transmitter power in the multi-objective function.  For 

some design variables (i.e. frequencies, powers, and ground antennae diameters), the optimum 

value function formulation values actually satisfy the imposed side constraints from Cases 1-6, 

even though they aren’t explicitly part of the optimization statement.  Other design variables (i.e. 

the satellite antennae diameters and the battery energy density) would be infeasible according to 

the previously imposed side constraints.  This demonstrates the fact that the value function offers 

greater design freedom to achieve the system preference.  For the satellite antennae diameters, a 

lower bound constraint indicates an imposed limitation due to the stakeholder wanting a high 

quality signal.  The optimum satellite antennae diameters in the value function formulation are 

smaller than the lower bounds set in the traditional cases, impacting the SNR negatively.  The 

small satellite antennae reduce the cost of placing the satellite into orbit by reducing mass.  The 

satellite system as a whole compensates for the smaller satellite antennae by creating large ground 

antennae, which increases manufacturing costs but are beneficial to the system as a whole in terms 

of the signal quality.  This type of trade would not have been easily captured in the traditional 

formulations. 
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Table 4.6. Optimal Design for Value Function Formulation 

 

Design 

Variable 
Values 

 
Outputs Values 

fdown 10 GHz  Net present profit 311.08 × 106 $ 

fup 10 GHz  SNR 30 dB 

Pt 1799.10 W  Spacecraft total mass 1179.83 kg 

Pgt 5811.74 W  Array size 54.77 m2 

Dsat,trans 0.35 m  Bus Length 1.35 m 

Dsat,rec 0.15 m  Bus Radius 0.45 m 

Dground,rec 10.30 m    

Dground,trans 4.55 m    

ℰ 1421.86 
𝑊−ℎ𝑟

𝑘𝑔
    

 

In the value function formulation results, the design variable associated with the energy 

density (ℰ) of the satellite battery also violates the side constraints imposed in the traditional 

formulations.  In the traditional proxy objective function formulations, the upper bound of the side 

constraint may be imposed due to stakeholder desires such as not wanting to invest in new battery 

technology as it is viewed as too costly or wanting to use commercial off the shelf (COTS) 

components.  The battery energy density for the optimum satellite system from value function 

formulation is significantly larger than the upper bound of 200 W-hr/kg imposed in the traditional 

formulations.  The larger battery energy density yields expensive technologically advanced 

batteries that will increase cost significantly.  However, the cost increase is offset by a reduction 

in mass and volume of the batteries, reducing the associated manufacturing and launch vehicle 

costs.  The satellite frequencies are partially driven to 10 GHz due to the impact of the environment 

on signal quality, taken into account by the rain attenuation factor [97, 98].  The satellite system’s 

SNR is driven to 30db in order to increase revenue.  The satellite transmitter power is also driven 

to a large value in order to increase revenue by increasing the number of possible transponders to 

be leased.  The increase in transponders causes the cost of the system to increase due to an increase 
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in mass and solar array area necessary to enable the satellite system to structurally support the 

additional transponders and to generate the necessary power.  The optimum values of the design 

variables and the associated system attributes in the value function formulation inherently reflect 

the tradeoff between revenue and cost in order to determine the maximum system net present 

profit.  No constraints or multi-objective formulations were required to achieve this. 

 

Table 4.7: Net Present Profit of all 

Cases 

Problem 

Formulation 

Net Present Profit 

($) 

Case 1 33.61 × 106 

Case 2 33.61 × 106 

Case 3 16.94 × 106 

Case 4 16.94 × 106 

Case 5 151.61 × 106 

Case 6 192.74 × 106 

Case 7 311.08 × 106 

 

The net present profits that are associated with each of the optimal designs of the cases in 

Table 4.1, using Eq. 4.9, are shown in Table 4.7.  This table shows how the different objective 

functions and sets of constraints from Cases 1-7 impact the profitability of the satellite system 

(with the understanding that the traditional cases do not have objective functions of maximize net 

present profit).  Table 4.7 illustrates the impact that misrepresentations of the stakeholder’s true 

preference have on the system design.   The net present profit values seen in Table 4.7 are 

associated directly with the optima found in the previous sections, which all used identical initial 

design variable sets in the optimization algorithms.  It is interesting to note that the net present 

profit associated with Cases 3 and 4 (cost) is less than the net present profit associated with Cases 

1 and 2 (mass).  The formation of a more accurate cost function is generally performed with the 
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expectation that a system will result in the company making more money.  However, Cases 3 and 

4 show that the company actually makes less money.  It can be seen quite clearly that the traditional 

proxy objective function formulations produced significantly lower net present profits than the 

value function formulation.  In an effort to drive the cost down using the mass of the system, the 

traditional formulations inadvertently reduced the profits that the company would receive.  It is 

also seen that the optimal design resulting from the value function formulation would never be 

achievable using the traditional formulations, given that the requirements from Cases 1-6 (which 

are typically formed from company legacy or industry traditions) are violated.  

The focus of this chapter was on emphasizing the importance of capturing true preferences 

of the stakeholder in a non-hierarchically decomposed system by bringing together VDD and 

MDO and ultimately addressing the research question 1. This is the first step towards enabling a 

design decision that is consistent with the system preference, involving all the disciplines in the 

system. The next chapter will deal with decomposing a value function in a hierarchically 

decomposed system and focusing on improving system consistency by capturing couplings.   
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CHAPTER 5 

PHYSICS-BASED CONSISTENCY IN VALUE FUNCTION DECOMPOSITION 

Most modern LSCES are extremely 

complex and multidisciplinary, involving diverse 

disciplines spanning geographical locations 

working towards a single system design. These 

elements make it difficult to address the design of 

LSCES as a whole. Past researchers have focused 

on decoupling the system to make the design 

process easier. This decomposition can be achieved either hierarchically or non-hierarchically [10, 

27]. Hierarchical decompositions are adopted in systems where the system can be decomposed 

into smaller subsystems involving levels of hierarchy as shown in Fig. 5.2, whereas non-

hierarchical decompositions are used in systems where it is difficult to identify top-down 

hierarchy, due to inherent couplings. A widely used representation for a non-hierarchical 

decomposition is the Design Structure Matrix (DSM), which is shown in Fig. 5.1. 

 

 
 

Figure 5.2: Hierarchical decomposition of a satellite system (Preliminary design) 

 

Modern LSCES like satellites and aircrafts are typically designed by large organizations. 

These large organizations are composed of several hierarchical levels consisting of decision 

 

Figure 5.1: Discipline-based DSM 

(Preliminary). 
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makers at each level. Traditionally, these LSCES are designed using the conventional 

requirements-based system engineering methodology [90]. The systems engineering approach 

simply provides requirements to be flowed down to the lower level designers, thereby leaving 

them unaware of the impact of their subsystem design on the system as a whole. VDD aids in 

addressing this issue by providing a system value function that captures the true preference(s) of 

the stakeholder. Since, value function captures the true preference(s) of the stakeholder and is 

singular in unit, it can be decomposed and flowed down to any subsystem/team in a hierarchically 

decomposed system to enable consistent design decision-making to achieve the true system 

preference [12, 99, 100]. Researchers in VDD have used scorecards to communicate a linearized 

value function down to the lower levels [43, 44, 101]. Scorecards offer a way of representing the 

impacts of lower-level attributes on the overall value function, but does not take couplings into 

consideration [102, 103]. More recently, couplings were addressed using a Value Influence (VI) 

factor [102], which represents the influence of one attribute on the other attribute’s value. 

However, this VI factor is purely empirical and application-specific. The quantification of 

couplings and the understanding of the impacts of these couplings on the overall value of the 

system are important in performing trade-offs within and among different levels of hierarchy in 

the design process. The couplings in a system are not easy for one person to comprehend, and great 

care must be taken in identifying the couplings and representing them in meaningful ways. The 

capture of couplings in system decomposition allows for the designers/managers at all levels to 

clearly understand the impact of their design decision on the overall system value. This chapter 

focuses on addressing research question 2 partly by incorporating system couplings from MDO in 

decomposing the value function using the scorecard approach, to obtain the impact on system 

value of a subsystem at any level of the hierarchy. The couplings are captured using GSE in terms 
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of total derivatives [36, 99] and are then incorporated into the scorecard approach from VDD. A 

mathematical formulation is created in this chapter to incorporate coupling information in 

obtaining the value impact of a subsystem at any level of the hierarchy to enable physics-based 

consistency associated with the system during the design process. 

 

Scorecards 

Previous studies have focused on obtaining the lower level value functions by linearizing 

the system level value function around an initial point [101-103]. These linearized subsystem level 

value functions are seen in Table 5.1. The formulation of these value functions is based on the 

knowledge that the system attributes are a function of attributes that originate one or more levels 

lower in the hierarchy.  

The traditional decomposed subsystem value functions (seen in Table 5.1) only capture the 

interactions in the hierarchy and fail to capture the lateral interactions across the system (i.e. the 

value functions listed here assume that the lower level attributes are just inputs to the subsystems 

directly above them in the hierarchy). The first subscript associated with attributes (A) in Table 

5.1 indicate the tier number, whereas the second subscript indicates the subsystem number 

associated with a particular level and the third subscript represents the attribute number at that 

level. For example, let us consider the attribute 𝐴3𝑚3𝑝3. The first subscript (number 3) represents 

3rd level in the hierarchy, second subscript (m3) represents the subsystem number at 3rd level and 

third subscript (p3) represents the attribute number at that level. Capturing couplings is very 

important in understanding the true impact of an attribute on the system value. These couplings 

can be mathematically captured by calculating the total derivatives that represent the total change 

in system value due to a change in attribute. A change in system value due to a change in a specific 
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attribute is mathematically represented in Eq. (5.1). The total derivative term on the right hand 

side of the equation can be solved in terms of partial derivatives and is discussed in detail using a 

simple example in the forthcoming sections. 

 

Table 5.1: Subsystem Value Functions 
 

Level Value function 

System ∑(
𝜕𝑉

𝜕𝐴01𝑝
)
𝐴01𝑝,0

 (𝐴01𝑝 −𝐴01𝑝,0)

𝑃

𝑝=1

 

Subsystem level 1 

(SSL1) 
∑(∑ (∑ (

𝜕𝑉

𝜕𝐴01𝑝
 
𝜕𝐴01𝑝
𝜕𝐴1𝑚1𝑝1

)
𝐴1𝑚1𝑝1,0

(𝐴1𝑚1𝑝1
− 𝐴1𝑚1𝑝1,0

)

𝑃1

𝑝1=1

)

𝑀1

𝑚1=1

)

𝑃

𝑝=1

 

Subsystem level 2 

(SSL2) 
∑(∑ (∑ (∑ (∑ (

𝜕𝑉

𝜕𝐴01𝑝
 
𝜕𝐴01𝑝
𝜕𝐴1𝑚1𝑝1

 
𝜕𝐴1𝑚1𝑝1

𝜕𝐴2𝑚2𝑝2

)
𝐴2𝑚2𝑝2,𝑜

(𝐴2𝑚2𝑝2 − 𝐴2𝑚2𝑝2,0)

𝑃2

𝑝2=1

)

𝑀2

𝑚2=1

)

𝑃1

𝑝1=1

)

𝑀1

𝑚1=1

)

𝑃

𝑝=1

 

Subsystem level 3 

(SSL3) 

∑(∑ (∑ (∑ (∑ (∑ (∑ (
𝜕𝑉

𝜕𝐴01𝑝
 
𝜕𝐴01𝑝
𝜕𝐴1𝑚1𝑝1

 
𝜕𝐴1𝑚1𝑝1

𝜕𝐴2𝑚2𝑝2

 
𝜕𝐴2𝑚2𝑝2

𝜕𝐴3𝑚3𝑝3

)
𝐴3𝑚3𝑝3,𝑜

(𝐴3𝑚3𝑝3 

𝑃3

𝑝3=1

𝑀3

𝑚3=1

𝑃2

𝑝2=1

𝑀2

𝑚2=1

𝑃1

𝑝1=1

𝑀1

𝑚1=1

𝑃

𝑝=1

− 𝐴3𝑚3𝑝3,0))))))) 

 

The attributes associated with a subsystem characterizes that subsystem. For example, the 

attributes that characterize the satellite transponders block (in Fig. 5.1) are mass of the 

transponders, volume of the transponders, power required by the payload, etc. It should be noted 

that the attributes are a function of design variables, behavior variables, parameters, and lower 

level attributes. Design variables are the inputs to the subsystems that are changed to optimize the 

design. Behavior variables represent the outputs of the subsystems. Parameters represent the 

constants associated with subsystem models. There is yet another variable type called coupling 

variables that is a subset of behavior variables. These coupling variables are the outputs of 

subsystems that are inputs to other subsystems.  

Where P is the number of system level attributes, P1-3 is the number of attributes at SSL1 through 

SSL3, M1-3 is the number of subsystems at SSL1 through SSL3, p is the attribute number at system 
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level, p1-3 is the attribute number at SSL1 through SSL3 and m1-3 is the subsystem number at SSL1 

through SSL3. 

 𝑑𝑉

𝑑𝐴𝑥𝑦𝑧
= 

𝜕𝑉

𝜕𝐴𝑥,𝑦,𝑧
+ ∑(

𝜕𝑉

𝜕𝐴01𝑝
 
𝑑𝐴01𝑝

𝑑𝐴𝑥𝑦𝑧
)

𝑃

𝑝=1

 

(5.1) 

Where x is the Tier number (0 being the system level to N being the total number of levels), 

y is the subsystem number, z is the attribute number, V is a function of system level attributes 

(such as 𝑓(𝐴011𝐴012, 𝐴013, … 𝐴01𝑃)), and P is the number of attributes at the system level. 

As mentioned previously, scorecards are useful in flowing down the value function to the 

lower levels of the hierarchy to obtain the impact of lower level subsystem attributes on the system 

value. A typical scorecard used in previous research that uses the subsystem value function 

formulations without couplings is seen in Table 5.2 [101-103]. This scorecard calculates the impact 

on value (∆𝑉) by all the attributes of a subsystem at a particular level. In essence, the scorecard 

calculates the terms in the second column of Table 5.1.  

 

Table 5.2: Scorecard without couplings 

 

Attributes 
Change in 

status 
 Gradient  Value Impact 

A111 A111 - A111,0 × ∑(
𝜕𝑉

𝜕𝐴01𝑝
 
𝜕𝐴01𝑝
𝜕𝐴111

)
𝐴111,0

𝑃

𝑝=1

 =  

A112 A112 - A112,0 × ∑(
𝜕𝑉

𝜕𝐴01𝑝
 
𝜕𝐴01𝑝
𝜕𝐴112

)
𝐴112,0

𝑃

𝑝=1

 =  

A121 A121 - A121,0 × ∑(
𝜕𝑉

𝜕𝐴01𝑝
 
𝜕𝐴01𝑝
𝜕𝐴121

)
𝐴121,0

𝑃

𝑝=1

 =  

Change in System value = ∑(
𝑉𝑎𝑙𝑢𝑒
 𝐼𝑚𝑝𝑎𝑐𝑡

) 

 

 

The first column of the scorecard represents the attributes of a subsystem at a particular 

level. The second column calculates the change in attribute value from initial value (that the value 

function is linearized at). The gradient column represents the partial derivative terms on the 
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equations.  The value obtained by multiplying the gradient column term by the change in status is 

captured in the last column. The last column gives the value impact (∆𝑉) of each individual 

attribute on the system value. The last row of the table represents the total impact on value by the 

entire subsystem that is a summation of the individual attribute value impacts. The individual 

impact on value by the attributes can be used to get an idea of which subsystem attributes affect 

the value the most.  This knowledge aids the designers in focusing their efforts in the design 

variables which contribute to those attributes. It should also be noted that the attributes cannot be 

changed directly but can only be changed by changing the corresponding design variables. A 

scorecard with couplings can be formed where the total derivative in Eq. (5.1) is used in the 

gradient column (as seen in Table 5.3). 

Table 5.3: Scorecard with couplings 

 

Attributes 
Change in 

status 
 Gradient  Value Impact 

A111 A111 - A111,0 × [
𝑑𝑉

𝑑𝐴111
]
𝐴111,0

 =  

A112 A112 - A112,0 × [
𝑑𝑉

𝑑𝐴112
]
𝐴112,0

 =  

A121 A121 - A121,0 × [
𝑑𝑉

𝑑𝐴121
]
𝐴121,0

 =  

Change in System value = ∑(
𝑉𝑎𝑙𝑢𝑒
 𝐼𝑚𝑝𝑎𝑐𝑡

) 

 

 

 

Capturing couplings in Value Function Decomposition  

As the attributes are functions of other variables, a proper capturing of these functional 

relationships is required in order to accurately calculate the total change in value. This can be 

demonstrated using a coupled two level system shown in Fig. 5.3.  
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Figure 5.3: Attribute functional relationships 

 

 

It can be seen from Fig. 5.3 that the value function at the top level is a function of system 

level attributes such as A011 and A012, which are functions of lower level attributes and behavior 

variables. The first subscript associated with the attributes (A) indicate the tier number, the second 

subscript indicates the subsystem number associated with a particular level, and the third subscript 

represents the attribute number at that level. For example, the attribute A322 represents an attribute 

associated with tier number 3, subsystem number 2 at that tier and attribute number 2 associated 

with that subsystem. The functional relationships between attributes at level 1 are shown in Fig. 

5.3. The Y’s in the figure denote behavior variables with the subscript representing the discipline 

number, i.e., D2 indicates discipline 2. The analysis associated with disciplines 1-3 are represented 

in Eqs. (5.2) - (5.4).  

 𝐷1 ((𝑋111, 𝑌𝐷2  𝑜𝑟 𝐴112), 𝑌𝐷1) = 0            (5.2) 

 𝐷2 ((𝑋121, 𝑋111, 𝑌𝐷1 , 𝑌𝐷3), 𝑌𝐷2) = 0            (5.3) 
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 𝐷3 ((𝑋121, 𝑌𝐷1 , 𝑌𝐷2), 𝑌𝐷3) = 0 (5.4) 

The figure shows that the attributes at level 1 are functions of other attributes, design 

variables, and behavior variables. In order to obtain the total change in value due to the attributes 

at level 1 the attribute couplings between SS1 and SS2 and the physics-based couplings need to be 

captured. To see this more clearly, let us consider obtaining the total change in value due to the 

attribute A112, which is represented in Eq. (5.5). 

 𝑑𝑉

𝑑𝐴112
=

𝜕𝑉

𝜕𝐴112
+

𝜕𝑉

𝜕𝐴011

𝑑𝐴011
𝑑𝐴112

+
𝜕𝑉

𝜕𝐴012

𝑑𝐴012
𝑑𝐴112

 
(5.5) 

Eq. (5.6) represents the total change in the system level attribute A011 due to A112, which is needed 

to solve Eq. (5.5).  

 𝑑𝐴011

𝑑𝐴112
=

𝜕𝐴011

𝜕𝐴111

𝑑𝐴111

𝑑𝐴112
 +
𝜕𝐴011

𝜕𝐴121

𝑑𝐴121

𝑑𝐴112
 (5.6) 

Eq. (5.7) represents the total change in A111 due to A112, which is needed to solve Eq. (5.6) 

 𝑑𝐴111
𝑑𝐴112

=
𝜕𝐴111
𝜕𝑌𝐷1

𝑑𝑌𝐷1
𝑑𝐴112

 
(5.7) 

In Eq. (5.7), A112 is both an attribute and a behavior variable (YD2). It should either be considered 

an attribute or a behavior variable in order to avoid counting its impact twice. This will be dealt 

with in detail in the next section. Since YD1 is a function of A112, the total derivative of YD1 with 

respect to A112 exists and this can be obtained from Eq. (5.8) as follows.  

 𝑑𝑌𝐷1
𝑑𝐴112

=
𝜕𝑌𝐷1
𝜕𝐴112

 
(5.8) 

In a similar manner the total change in A012 with respect to A112 can be obtained. It is clear 

from the above example that a capturing of the couplings at the behavior-variable-level is needed 

to provide a more detailed representation of the interactions present in the system.  
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Dependency Issue 

 

The designer at a particular level must be careful in selecting the attributes to be represented in the 

scorecards. It must be made sure that the attributes are independent of each other. This can be done 

by calculating the sensitivities between attributes. Consider a simple coupled two-subsystem 

example as shown in Fig. 5.4. The designer wishes to maximize the value function as shown in the 

figure that is a function of lower level attributes. Subsystems 1 and 2 are coupled via attributes and 

attributes in a subsystem are functions of other attributes in that subsystem (the attribute A112 is a 

function of A111).  The scorecard representing the value impact of SL2 attributes is represented in 

Table 5.4. The scorecard shows that the total ∆𝑉 = 24.88, however the actual change in value 

(∆𝑉) that is obtained when the new attribute values (listed in “Change in status” column of 

scorecard) are substituted in the value function is 8.68. This discrepancy is due to the dependency 

of attributes. Figure 5.4 shows that the only independent attribute is A122 and all the other attributes 

are functions of A122 both directly and indirectly via another attribute. 

 
 

Figure 5.4: Attribute dependency Figure 5.5: Design variable 

dependency 

 

  The value impact of A122 is counted once, when the value impact of A111 is calculated 

because A111 is a function of A122 and the value impact of A122 is counted again via A111, during 
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the calculation of A112. This is the major cause for the huge discrepancy in ∆𝑉 in addition to 

linearization with respect to the value function. 

 

Table 5.4: Scorecard - Attribute dependency 

Attributes 
Change 

in status 
x Gradient = 

Change 

in Value 
∑

𝐕𝐚𝐥𝐮𝐞 
𝐢𝐦𝐩𝐚𝐜𝐭

 

Actual 

value 

impact 

A111 2.2 - 2 x [
𝑑𝑉

𝑑𝐴111
]
0

= 37 = 7.4 
 

 

 

 

24.88 

 

 

 

 

 

8.68 

A112 4.84 - 4 x [
𝑑𝑉

𝑑𝐴112
]
0

= 8 = 6.72 

A121 4.84 - 4 x [
𝑑𝑉

𝑑𝐴121
]
0

= 4 = 3.36 

A122 1.1 - 1 x [
𝑑𝑉

𝑑𝐴122
]
0

= 74 = 7.4 

 

Another area of concern is due to attributes that are functions of the same design variables. 

Consider the simple one subsystem, two level system shown in Fig. 5.5, where the designer wishes 

to maximize the value function.  The attributes at SL1 (the second level of the hierarchy), A111 and 

A112, are a function of the same design variable X111. The scorecard for SL1 is depicted in Table 

5.5. This scorecard calculates the value impact due to changes in attributes A111 and A112. The 

design variable responsible for the change in both A111 and A112 is X111. For a desired value of A111 

= 2.1, the corresponding value of X111 = 2.1, whereas for a desired value of A112 = 4.1, X111 = 2.02. 

This indicates that the system is physically inconsistent and does not represent a real system. This 

inconsistency is due to both attributes being dependent on each other through X111. This 

dependency issue can be overcome by characterizing the system at SL1 by using either A111 or 

A112.  
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Table 5.5: Attribute dependency 

 

Attributes 
Change 

in status 
x Gradient = 

Change 

in 

Value 

∑
𝑉𝑎𝑙𝑢𝑒 
𝑖𝑚𝑝𝑎𝑐𝑡

 

A111 2.1 - 2 x [
𝑑𝑉

𝑑𝐴111
]
0

= 1 = 0.1 
 

 

0.2 
A112 4.1 – 4 x [

𝑑𝑉

𝑑𝐴112
]
0

= 1 = 0.1 

 

 

Case Studies 

A simple two level system and a more complex satellite system are considered in this 

dissertation to contrast the effects of capturing couplings. As mentioned earlier, the total derivative 

terms on the right hand side of the Eq. (5.1) are solved in terms of partial derivatives for the simple 

system. Similar equations are used to explore the satellite. The results associated with both the 

systems are discussed in detail in the results section.  

 

Simple System 

A simple example consisting of only two levels of hierarchy and two subsystems is shown 

in Fig.5.6.  This system is used to explore the effects of couplings and to investigate the 

representation of the total derivative terms on the right hand side of Eq. (5.1) in terms of partial 

derivatives. The example considered here is a minimization problem where the value function (V) 

is minimized to find the optimum. Each of the two subsystems at SSL1 consists of attributes and 

design variables.  Fig. 5.6 represents the coupling that links the two subsystems by an arrow 

between them.  
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Figure 5.6. Simple two level system 

 

The total impact of attributes on value with couplings for this simple example can be 

represented in a matrix form, shown in Eq. (5.9) (that is a matrix representation of Eq. (5.1)). The 

terms on the right hand side of Eq. (5.9) represent the value impact of each attribute, used in the 

gradient column of the scorecard. The elements in the 3x3 matrix on the left hand side of Eq. (5.9) 

represents the total derivative terms previously seen in the right hand side of Eq. (5.1). The matrix 

elements can be solved by knowing the functional relationships between attributes. The partial 

derivative terms can be obtained either analytically or numerically using finite difference. The 

calculation of the matrix elements of Eq. (5.10) (using partial derivative terms) is seen in Eq. 

(5.10). 

 

 

[
𝜕𝑉

𝜕𝐴1
    

𝜕𝑉

𝜕𝐴2
    

𝜕𝑉

𝜕𝐴3
]

[
 
 
 
 
𝑑𝐴1

𝑑𝐴3
    
𝑑𝐴1

𝑑𝐴2
    1

𝑑𝐴2

𝑑𝐴3
    1    

𝑑𝐴2

𝑑𝐴1

1    
𝑑𝐴3

𝑑𝐴2
    
𝑑𝐴3

𝑑𝐴1]
 
 
 
 

    =   [
𝑑𝑉

𝑑𝐴3
    

𝑑𝑉

𝑑𝐴2
    

𝑑𝑉

𝑑𝐴1
] 

(5.9) 

 



www.manaraa.com

66 

 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 −

𝜕𝐴1
𝜕𝐴3

0 1 0 −
𝜕𝐴2
𝜕𝐴3

0 0

0 0 1 0 −
𝜕𝐴1
𝜕𝐴1

0

0 −
𝜕𝐴3
𝜕𝐴2

0 1 0 0

0 0 −
𝜕𝐴2
𝜕𝐴1

0 1 0

−
𝜕𝐴3
𝜕𝐴1

0 0 0 0 1
]
 
 
 
 
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝐴1
𝑑𝐴2
𝑑𝐴2
𝑑𝐴1
𝑑𝐴1
𝑑𝐴3
𝑑𝐴3
𝑑𝐴1
𝑑𝐴2
𝑑𝐴3
𝑑𝐴3
𝑑𝐴2]

 
 
 
 
 
 
 
 
 
 
 
 
 

   =    

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝐴1
𝜕𝐴2
𝜕𝐴2
𝜕𝐴1
𝜕𝐴1
𝜕𝐴3
𝜕𝐴3
𝜕𝐴1
𝜕𝐴2
𝜕𝐴3
𝜕𝐴3
𝜕𝐴2]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(5.10) 

 

 

The scorecard with and without couplings for the simple two level system is shown in Table 

5.6 (“with couplings” takes into account the interaction between attribute 2 and attribute 3). This 

scorecard only represents the impact on value due to the change in attributes. It is understood that 

the attributes cannot be changed directly without changing the corresponding design variables.  

 

Table 5.6: Scorecard for simple system at SL1, SS1 

 

 It can be seen from Table 5.6 that the value impact due to SS1, with the couplings captured, 

is greater than the value impact due to SS1 without couplings (Note that this is not necessarily the 

case where value impact always increases). If the designer at SS1 uses a scorecard with no 

couplings he might conclude that the attributes at SS1 are not worth changing since they don’t 

 Attributes 
Change 

in status 
x Gradient = 

Change 

in Value 
∑(

𝑉𝑎𝑙𝑢𝑒
 𝐼𝑚𝑝𝑎𝑐𝑡

) 

 

With 

coupling 

A1 
-1.76 + 

1.75 
x [

𝑑𝑉

𝑑𝐴1
]
0

= 1 = -0.017 
 

 

-0.69 
A2 3.96 - 4 x [

𝑑𝑉

𝑑𝐴2
]
0

= 17 = -0.68 

 

Without 

coupling 

A1 
-1.76 + 

1.75 
x [

𝜕𝑉

𝜕𝐴1
]
0

= 1 = -0.017 
 

 

-0.53 
A2 3.96 - 4 x [

𝜕𝑉

𝜕𝐴2
]
0

= 13 = -0.52 
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result in a drastic decrease in value.  The designer will be able to make a more accurate (and 

meaningful) assessment if he also captures the pathway that attribute 2 impacts the value through 

attribute 3. This emphasizes that care must be taken in capturing the couplings to obtain sensitivity 

information.   

A similar scorecard comparison can be created for subsystem 2.  This comparison is seen in 

Table 5.7.  As shown, the information provided by the scorecards are identical.  This identical 

information is due to attribute 3 having no pathway to impact the value through attributes 1 and 2.  

The only way in which that attribute 3 can change the value is directly. 

 

Table 5.7: Scorecard for simple system at SSL1, SS2 

 

 

As previously mentioned, the attribute values above must be related to a set of design variables 

in order for the system design to be consistent.  The set of design variables which are related to the 

attributes from Tables 5.6 and 5.7 is shown in Table 5.8.  Table 5.9 represents the modified 

attributes from the changes made by the designer of the first subsystem (as performed in Table 

5.6).  The set of design variables are chosen to ensure system consistency with the modified 

attributes.  The actual value of the new system is determined, as is the change in the actual value.  

The expected change in values predicted by the scorecards (from Table 5.6) are compared with the 

actual change through percentage error calculation.  It is seen that the percentage error in the 

change in value with couplings is smaller than without couplings.  This further highlights the 

 Attributes 
Change in 

status 
x Gradient = 

Change 

in Value 
∑(𝑉𝑎𝑙𝑢𝑒 𝐼𝑚𝑝𝑎𝑐𝑡) 

With 

coupling 
A3 12.87 - 13 x [

𝑑𝑉

𝑑𝐴3
]
0

= 4 = -0.52 -0.52 

Without 

coupling 
A3 12.87 - 13 x [

𝜕𝑉

𝜕𝐴3
]
0

= 4 = -0.52 -0.52 
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greater accuracy gained by incorporating couplings into the scorecard.  Table 5.10 represents a 

similar comparison of expected value changes relating to the scorecard for SS2 at SSL1 with and 

without couplings (Table 5.7).  It can be seen that the value impacts are the same for both of the 

cases. This identical error is due to attribute 3 not being an input to SS1.   

 

Table 5.8: Initial design – simple example 

 

 

 

 

 

Table 5.9: Final design – SS1 

 

 

Table 5.10: Final design – SS2 

 

 

Design 

Variable 

 

A1 

 

A2 

 

A3 

 

Value 

Actual 

value 

change 

Expected 

value 

change 

from 

coupled 

SS1 

scorecard 

% error 

in ∆𝑽 

with 

couplings 

Expected 

value 

change 

from 

non-

coupled 

SS1 

scorecard 

% error in 

∆𝑽 

without 

couplings 

X1 = 0.500  

-1.75 

 

4 

 

12.87 

 

47.72 0.52 -0.52 

 

1.98 

 

-0.52 

 

1.98 X2 = 2.000 

X3 = 2.978 

 

Design Variable A1 A2 A3 Value 

X1 = 0.5 
 

-1.75 

 

4 

 

13 

 

48.25 
X2 = 2.0 

X3 = 3.0 

 

Design 

Variable 

 

A1 

 

A2 

 

A3 

 

Value 

Actual 

value 

change 

Expected 

value 

change 

from 

coupled 

SS1 

scorecard 

% error 

in ∆𝑽 with 

couplings 

Expected 

value 

change 

from non-

coupled 

SS1 

scorecard 

% error 

in ∆𝑽 

without 

couplings 

X1 = 0.471  

-1.76 

 

3.96 

 

13 

 

47.49 -0.75 -0.69 

 

1.92 -0.53 

 

28.35 X2 = 1.989 

X3 = 3.000 
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It is important to note that the final designs determined from the two subsystem scorecards are 

different.  This emphasizes the need for a system-wide iteration to ensure system-wide consistency.  

It is also important to note that a change in attribute 3 may mean a change in attribute 2.  Realizing 

the couplings that exist is a critical step when forming scorecards to ensure that the change in value 

is meaningful.   

 

Satellite System 

Now let us consider the hierarchically decomposed satellite system as described in Chapter III to 

demonstrate the importance of capturing couplings in system decomposition in the context of 

VDD. The satellite system example is best perceived as a preliminary design. The desire of the 

stakeholder is assumed to be to maximize profit as this is a commercial endeavor.  As such, the 

system level value function is net present profit [12, 104]. A total of 36 design variables define the 

satellite system (out of which 14 are continuous and 22 are discrete). A detailed description of the 

attributes and design variables associated with all the levels of the hierarchy is provided in the 

Appendix. The interactions between the eight SL1 subsystems can be visualized in a DSM (shown 

in Fig. 5.1). The dots in the DSM indicate the presence of a coupling between the corresponding 

subsystems. The total derivatives that are needed for various scorecard implementations are 

derived in a similar manner to that of the simple system example.  An example which determines 

the derivative associated with the impact in value due to a change in payload power (Ppayload) is 

demonstrated.  Figure 5.7 shows the pathway that Ppayload takes to impact the value through the 

Power subsystem. The pathways in which an attribute can affect another attribute can be vast.  

Proper capturing of these pathways is needed to fully understand a change in one attribute due to 

a change in another. 
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Figure 5.7. Attribute impact – Satellite system 

 

Equation (5.11) represents the top level attributes which the value function is formed from, revenue 

and cost. 

 𝑉 = 𝑓(𝑇𝐶, 𝑅𝑒𝑣) = −𝑇𝐶 + ∑
𝑅𝑒𝑣𝑦

(1+𝑟𝑑)
𝑦

𝑂𝐿
𝑦=1   

𝑟𝑑: 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 = 10% 

𝑂𝐿: 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = 10 𝑦𝑒𝑎𝑟𝑠 

𝑦: 𝑦𝑒𝑎𝑟 

(5.11) 

Where TC is total cost and Rev is revenue.  Equation (5.12) represents the impact on value due to 

payload power required as it relates to cost and revenue. 

 𝑑𝑉

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
= 

𝜕𝑉

𝜕𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+ 

𝜕𝑉

𝜕(𝑇𝐶)
 
𝑑(𝑇𝐶)

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+ 

𝜕𝑉

𝜕(𝑅𝑒𝑣)
 
𝑑(𝑅𝑒𝑣)

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
 

(5.12) 

Where Ppayload is the power required by payload.  Equation 5.13 represents the total derivative 

associated with the impact on total cost due to a change in payload power required (as seen in Eq. 

(5)).  The ways in which payload power required may impact total cost is through the attributes by 

which it is formed (the individual costs of the subsystems). 
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 𝑑(𝑇𝐶)

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
= 

𝜕(𝑇𝐶)

𝜕𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+ 

𝜕(𝑇𝐶)

𝜕𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
 
𝑑𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+ 

𝜕(𝑇𝐶)

𝜕𝑃𝑔𝑟𝑜𝑢𝑛𝑑 
 
𝑑𝐶𝑔𝑟𝑜𝑢𝑛𝑑

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
 

+ 
𝜕(𝑇𝐶)

𝜕𝑃𝑝𝑜𝑤𝑒𝑟
 
𝑑𝐶𝑝𝑜𝑤𝑒𝑟

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+⋯ 

(5.13) 

Where Cpayload is the cost of the payload subsystem, Cground is the cost of the ground subsystem, 

and Cpower is the cost of the power subsystem.  The cost of the power subsystem is a function of 

the costs of the solar array and battery.  Equation (5.14) expands the derivative associated with the 

change in power cost due to the change in payload power required by using the attributes associated 

with the power cost. 

 𝑑𝐶𝑝𝑜𝑤𝑒𝑟

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
=  

𝜕𝐶𝑝𝑜𝑤𝑒𝑟

𝜕𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+ 
𝜕𝐶𝑝𝑜𝑤𝑒𝑟

𝜕𝐶𝑆𝐴
 
𝑑𝐶𝑆𝐴

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+ 
𝜕𝐶𝑝𝑜𝑤𝑒𝑟

𝜕𝐶𝐵𝑎𝑡𝑡
 
𝑑𝐶𝐵𝑎𝑡𝑡
𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑

 
(5.14) 

Where CSA is the cost of the solar array and CBatt is the cost of the battery.  The cost of the solar 

array is a function of the power required by all of the subsystems and the material of the solar 

array.  Note that the derivative of a change in solar array material due to a change in power required 

by payload is meaningless due to the solar array material being a design variable.  Hence, this 

derivative is not represented.  Similar to the previous equations, Eq. (5.15) expands the derivative 

associated with solar array cost. 

 𝑑𝐶𝑆𝐴
𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑

= 
𝜕𝐶𝑆𝐴

𝜕𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+ 
𝜕𝐶𝑆𝐴
𝜕𝑃0

 
𝑑𝑃0

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
 

(5.15) 

Where P0 is the power required by all of the subsystems.  Power required by all of the subsystems 

is a function of power required by payload, power required by ADCS, and power required by 

thermal subsystem.  Battery cost is a function of the power required by all of the subsystems and 

the battery type (where battery type is a design variable).  Equation (5.16) expands the derivative 

associated with the battery cost from Eq. (5.14). 
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 𝑑𝐶𝐵𝑎𝑡𝑡
𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑

= 
𝜕𝐶𝐵𝑎𝑡𝑡
𝜕𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑

+ 
𝜕𝐶𝐵𝑎𝑡𝑡
𝜕𝑃0

 
𝑑𝑃0

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
 

(5.16) 

In a similar manner we can determine the change in revenue due to a change in power required by 

payload.  As the revenue is not a function of payload power required (directly or indirectly through 

couplings) the derivative is zero.  As can be seen the pathways in which an attribute can affect 

another attribute can be vast.  Proper capturing of these pathways are needed to fully understand a 

change in one attribute due to a change in another. 

The system level scorecard with and without couplings is seen in Table 5.11. Table 5.12 

represents the scorecard for the attributes at the next subsystem level (SSL1).  Due to the large 

number of attributes at this level only four are represented (payload cost, downlink signal to noise 

ratio, ground cost, and uplink signal to noise ratio), with the understanding that many more would 

be represented to capture the entire impact of the SSL1 attributes. 

 

Table 5.11: System Level Scorecard – Satellite Example 

 

 Attributes 
Change in 

status 
x Gradient = 

Change in 

Value 
∑(

𝑉𝑎𝑙𝑢𝑒 
𝐼𝑚𝑝𝑎𝑐𝑡

) 

 

With 

coupling 

Total cost −4.22 × 105 x [
𝑑𝑉

𝑑𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
]
0
= −1  = 4.22 × 105 

2.66 × 106 
Revenue 2.24 × 106 x [

𝑑𝑉

𝑑𝑅𝑒𝑣𝑒𝑛𝑢𝑒
]
0
= 1  = 2.24 × 106  

 

Without 

coupling 

Total cost −4.22 × 105 x [
𝜕𝑉

𝜕𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
]
0
= −1  = 4.22 × 105  

2.66 × 106 
Revenue 2.24 × 106 x [

𝜕𝑉

𝜕𝑅𝑒𝑣𝑒𝑛𝑢𝑒
]
0
= 1  = 2.24 × 106  
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Table 5.12: SL1 Scorecard – Satellite Example 
 

 Attributes Change in status x Gradient = Change in Value 

1.  Cpayload - Cpayload,0 x [
𝑑𝑉

𝑑𝐶𝑝𝑎𝑦𝑙𝑎𝑜𝑑
]
0

  =  

2.  SNRdown - SNRdown,0 x [
𝑑𝑉

𝑑𝑆𝑁𝑅𝑑𝑜𝑤𝑛
]
0
  =  

3.  Cground - Cground,0 x [
𝑑𝑉

𝑑𝐶𝑔𝑟𝑜𝑢𝑛𝑑
]
0

  =  

4.  SNRup - SNRup,0 x [
𝑑𝑉

𝑑𝑆𝑁𝑅𝑑𝑜𝑤𝑛
]
0
  =  

. 

. 

. 
 

. 

. 

. 

 

. 

. 

. 
 ∑(𝑉𝑎𝑙𝑢𝑒 𝐼𝑚𝑝𝑎𝑐𝑡) 

  

 

Only the scorecards associated with the Payload subsystem for all the levels of hierarchy are 

presented in this research due to the complexity of the satellite system. Similar scorecards can be 

made for the other subsystems.  The scorecard at SL1, SS1 of payload yields the same value impact 

with and without couplings (as shown in Table 5.13). This is due to the attributes, Cpayload and 

SNRdown, being direct inputs to the system and are not inputs to any other subsystem. 

 

Table 5.13: SL1 (Payload) Scorecard – Satellite example 

 

SL1 

SS1 

 Attributes 
Change 

in status 
x Gradient = 

Change 

in Value 
∑(

𝑉𝑎𝑙𝑢𝑒 
𝐼𝑚𝑝𝑎𝑐𝑡

) 

 

With 

coupling 

Cpayload -602.78 x [
𝑑𝑉

𝑑𝐶𝑝𝑎𝑦𝑙𝑎𝑜𝑑
]
0

= −1  = 602.787 

2.42 × 106 
SNRdown 0.24 x [

𝑑𝑉

𝑑𝑆𝑁𝑅𝑑𝑜𝑤𝑛
]
0
= 10.10 × 106  = 2.42 ×

106  

 

Without 

coupling 

Cpayload -602.78 x [
𝜕𝑉

𝜕𝐶𝑝𝑎𝑦𝑙𝑎𝑜𝑑
]
0

= 1  = 602.787 

2.42 × 106 
SNRdown 0.24 x [

𝜕𝑉

𝜕𝑆𝑁𝑅𝑑𝑜𝑤𝑛
]
0
= 9.99 × 106  = 2.42 ×

106  

 

The scorecard for SL2 is represented in Table 5.14. The subsystems at this level are the payload 

satellite transponder and payload satellite antennae subsystems.  It can be seen that the value 

impact due to the change in attributes at SL2, SS1 with couplings is much greater than the one 

without couplings. This is due to the interactions not being captured (i.e., for the scorecard without 

couplings, the partial derivative terms just represent the interactions in the hierarchy (only within 
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Payload subsystem), whereas it fails to capture the lateral interactions across the satellite system). 

More clearly, the attribute Ppayload gets input into the Power subsystem.  Due to this coupling, an 

increase in Ppayload will result in an increase in Solar Array area and Battery mass that in turn will 

result in an increase in the cost and mass of the satellite. An increase in cost and mass of the 

satellite results in a decrease in value. Hence, the real impact of Ppayload on the system value can 

only be captured using total derivative (as shown in Table 5.14 with couplings).  Without 

knowledge of the total impact of Ppayload on the value, the designer at SL2 SS1 may easily make 

decisions that would result in the satellite company losing profit 

 

Table 5.14: SL2 Scorecard– Satellite example 

 

 

SL2 

SS1 

 Attributes 

Change 

in 

status 

x Gradient = 

Change 

in 

Value 

∑(
𝑉𝑎𝑙𝑢𝑒 
𝐼𝑚𝑝𝑎𝑐𝑡

) 

 

With 

coupling 

Mtrans -0.15 x [
𝑑𝑉

𝑑𝑀𝑡𝑟𝑎𝑛𝑠
]
0
= −500  = 75 

−3.4 × 104 
Ppayload 13.325 x [

𝑑𝑉

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
]
0

= −2558  = −3.4
× 104 

 

Without 

coupling 

Mtrans -0.15 x 
[

𝜕𝑉

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝑀𝑡𝑟𝑎𝑛𝑠
+

 
𝜕𝑉

𝜕𝑆𝑁𝑅𝑑𝑜𝑤𝑛

𝜕𝑆𝑁𝑅𝑑𝑜𝑤𝑛

𝜕𝑀𝑡𝑟𝑎𝑛𝑠
]
0
= −500  

= 75 

 

 

 

75 

 

 

 

Ppayload 13.325 x 
[

𝜕𝑉

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+

 
𝜕𝑉

𝜕𝑆𝑁𝑅𝑑𝑜𝑤𝑛

𝜕𝑆𝑁𝑅𝑑𝑜𝑤𝑛

𝜕𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
]
0

= 0  
= 0 

 

SL2 

SS2 

 

With 

coupling 

Csat,ant -527.78 x [
𝑑𝑉

𝑑𝐶𝑠𝑎𝑡,𝑎𝑛𝑡
]
0

= −1  = 527.78 527.78 

 

Without 

coupling 

Csat,ant -527.78 x 
[

𝜕𝑉

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝐶𝑠𝑎𝑡,𝑎𝑛𝑡
+

 
𝜕𝑉

𝜕𝑆𝑁𝑅𝑑𝑜𝑤𝑛

𝜕𝑆𝑁𝑅𝑑𝑜𝑤𝑛

𝜕𝐶𝑠𝑎𝑡,𝑎𝑛𝑡
]
0
= −1  

= 527.78 527.78 
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Table 5.15: SSL3 Scorecard– Satellite example 

 

 

SL3 

SS1 

 Attributes 

Change 

in 

status 

x Gradient = 

Change 

in 

Value 

∑(
𝑉𝑎𝑙𝑢𝑒 
𝐼𝑚𝑝𝑎𝑐𝑡

) 

   With 

coupling 

Gst 266.19 x [
𝑑𝑉

𝑑𝐺𝑠𝑡
]
0
= 1622  = 4.31

× 105 4.32 × 105 

Mst -0.65 x [
𝑑𝑉

𝑑𝑀𝑠𝑡
]
0
= −399.96  = 263.86 

Without 

coupling 

Gst 266.19 x 
[

𝜕𝑉

𝜕𝑅𝑒𝑣𝑒𝑛𝑢𝑒

𝜕𝑅𝑒𝑣𝑒𝑛𝑢𝑒

𝜕𝑆𝑁𝑅𝑑

𝜕𝑆𝑁𝑅𝑑

𝜕𝐺𝑠𝑡
]
0
=

1.622 × 103  
= 4.31

× 105 
 

4.32 × 105 
 

Mst -0.65 x 
[

𝜕𝑉

𝜕𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝜕𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝐶𝑠𝑎𝑡,𝑎𝑛𝑡

𝜕𝐶𝑠𝑎𝑡,𝑎𝑛𝑡

𝜕𝑀𝑠𝑡

]

0

  

= −400 

= 263.89 

 

SL3 

SS2 

 

With 

coupling 

Gsr 263.55 x [
𝑑𝑉

𝑑𝐺𝑠𝑟
]
0

= 39.70 = 1.04
× 104 

 

1.074 × 105 

 Msr -0.659 x [
𝑑𝑉

𝑑𝑀𝑠𝑟
]
0
= −399.96  = 263.86 

Without 

coupling 

Gsr 263.55 x 0 = 0 

263.89 
Msr -0.65 x 

[

𝜕𝑉

𝜕𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝜕𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝜕𝐶𝑠𝑎𝑡,𝑎𝑛𝑡

𝜕𝐶𝑠𝑎𝑡,𝑎𝑛𝑡

𝜕𝑀𝑠𝑟

]

0

  

= −400 

= 263.89 

 

The scorecard representing SL3 (satellite transmitting antenna and satellite receiving antenna 

subsystems) is seen in Table 5.15.  A minor difference is observed between the value impacts due 

to Mst (mass of satellite transmitting antenna) at SL3 SS1 (satellite transmitting antenna subsystem) 

when couplings are taken into account and when they are not.  The effect of not capturing the 

couplings is also seen in the SL3 SS2 scorecard (satellite receiving antenna subsystem), shown in 

Table 5.15. The attribute Gsr (gain of satellite receiving antenna) is only an input into the Ground 

subsystem.  Hence, the only path for the attribute to impact the system value is through the ground 

subsystem.  This pathway for impact is captured through the total derivative used in the “with 

coupling” scorecard.  Without the couplings the interaction is not captured and, since the attribute 
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is not an input into any subsystem directly above the satellite receiving antenna subsystem, the 

gradient is zero.  

The desired change in value can be achieved by determining the design variables 

responsible for the changes in attributes that are considered. For example, the attribute SNRdown 

(downlink signal to noise ratio) at SSL1 SS1 that is a function of a number of attributes and design 

variables (shown in Eqn. (5.17)). It has already been found from the scorecard at SSL1 SS1 (Table 

5.13) that an increase in SNRdown will result in an increase in value.  A change in SNRdown can be 

achieved in multiple ways.  One way to change the downlink signal to noise ratio is by changing 

Gst (gain of satellite transmitting antenna), an attribute at SSL3 SS1. Gst is a function of Dsat,trans 

(diameter of satellite transmitting antenna) and fdown
 (downlink frequency) (Eqn. (5.18)), which 

are design variables at SSL3 SS1. Changing these design variables will result in a change in. The 

change in Gst will result in a change in SNRdown, leading to a change in value. However, care must 

be taken in changing the design variables, since some design variable changes might result in 

increased cost rather than revenue. For example, the designer might increase Dsat,trans under the 

belief that it will result in an increase in Gst and hence an increase in value.  This may not result in 

a net value increase as an increase in Dsat,trans will result in an increase in mass and an associated 

cost.  

 𝑆𝑁𝑅𝑑𝑜𝑤𝑛 = 𝑓(𝑃𝑠𝑡, 𝐺𝑠𝑡 , 𝐺𝑔𝑟 , 𝐿𝑠) (5.17) 

 

 𝐺𝑠𝑡 = 𝑓(𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠, 𝑓𝑑𝑜𝑤𝑛) (5.18) 

   

Similarly, a desired change in Ppayload can be achieved by changing the design variables which 

modify the attribute (as shown in Eqn. (5.19)).  

 𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑓(𝑁, 𝑃𝑠𝑡) (5.19) 
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As mentioned earlier, the effect of changing the design variables on the value must be explored 

before changing them. The impact of a particular design variable on value at any level can also be 

captured by obtaining the total derivative, which captures all the interactions going on in the 

system. For example, a change in the design variable Pst (satellite transmitter power) will change 

the system value through multiple paths, including payload power and downlink signal to noise 

ratio. 

The use of scorecards in VDD provides a means of understanding the impact on value 

various attributes may have.  This is useful at all levels of the system hierarchy to enable informed 

design decisions.  Traditionally, the scorecards have focused on obtaining value impacts by just 

capturing the interactions in the hierarchy and not capturing the lateral interactions across the 

system. This chapter has focused on addressing research question 2 partly by emphasizing the 

importance of capturing couplings during the value function decomposition and representation in 

scorecards to enable consistency in physics.  A mathematical formulation to capture couplings in 

system decomposition in the context of VDD, using Global Sensitivity Equations (GSE), was 

introduced. It is evident from the scorecard examples that a failure to capture couplings in the 

scorecard will result in a misrepresentation of a change in value. This misrepresentation is seen 

mathematically by the use of partial derivative rather than total derivatives. This misrepresentation 

may drive the designers to make misinformed design decisions resulting in a net value loss. 

Another important realization in this chapter was the need to understand attribute dependency to 

other attributes and design variables. The attribute impacts on value act as a starting point for 

designers at different levels of the hierarchy to focus on the areas which impact the system value 

more. In order to actually maximize value, the design variables corresponding to the attributes that 

impact the value positively should be changed by taking the dependency issues into consideration. 
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The next chapter addresses the issues associated with using scorecards for optimization 

emphasizing how these issues can be rectified using a new Value-Based Systems Engineering 

(VBSE) framework.  

 

 

From requirements to value 

Chapter 4 showed how a value function formulation expanded the design space by reducing 

the requirements placed on the design. It is understandable that not all requirements can be 

eliminated. For example, in the case of an aircraft, the wing span is restricted by the hanger 

dimensions. These are mandatory requirements. However, there exist a vast quantity of 

requirements that are only a product of legacy knowledge and those which arise when the system 

requirements are broken down. The following example demonstrates how such a requirement 

placed on the diameter of satellite transmitting antenna can be reflected in terms of value, such 

that all the internal trades are captured.  Figure. 5.8 shows how a constraint placed on a design 

variable can be reflected on to the final system value through few of the multiple pathways. From 

Eq. 4.1, the design variable Dst (diameter of the satellite transmitting antenna) is constrained 

between 0.5m and 2.5m resulting in a limited design space exploration. This requirement is usually 

deduced from mass and payload envelope requirement of the launch vehicle. This requirement can 

be relaxed if the cost for using a bigger launch vehicle due to an increase in Dst is overcome by the 

revenue generated due to Dst. This can be done by reflecting the effect of the requirement on Dst 

through attributes at different levels of hierarchy and then mapping to value function.   
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Figure 5.8: Reflecting Requirements as Value 

 

For instance, when Dst is increased, it increases Mst (mass of satellite transmitting antenna), which 

in turn increase Csat,ant (cost of satellite transmitting antenna) leading to an increase in Cpayload (cost 

of payload). Cost of payload then increases the total cost associated with the system, which is a 

system level attribute. This can be seen in Fig. 5.9, which represents the functional relationships 

between Dst and Total cost.  

 

Figure 5.9: Impact of Dst on Total Cost 
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Also, increasing Dst increases the signal quality by improving the gain and Signal to Noise Ratio 

(SNR) of the satellite. SNR is an attribute associated with the Payload that contributes to the 

revenue stream in the value function, which can be seen in Fig. 5.10.  

 

Figure 5.10: Impact of Dst on Revenue 

 

Figure 5.11 represents the final impact of Dst on value by mapping the total cost and revenue. In 

this manner, it is possible to identify the true effect of the requirements imposed on Dst based on 

different pathways it takes to impact the value. 
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Figure 5.11: Impact of Dst on System Value 

 Similarly, this can be extended to other constraints. In this manner, in a value formulation, the 

need to use constraints to obtain meaningful designs in traditional MDO is taken care of by 

mapping them to system attributes via lower level attributes. 
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CHAPTER 6 

OPTIMIZATION IN THE CONTEXT OF VALUE-DRIVEN DESIGN 

The focus of previous chapter has been on enabling consistency in physics by capturing 

couplings in decomposing value functions using the scorecard approach. The use of scorecards in 

VDD provides a means of understanding the value impact of attributes.  This is useful at all levels 

of the system hierarchy to enable informed design decisions. However, just the impact of attributes 

on value is not enough in making a design decision as attributes are functions of design variables, 

behavior variables, other attributes, parameters, etc. Therefore, in order to actually achieve a 

change in attribute, the corresponding design variables need to identified and changed. Once the 

value impacts of attributes are obtained, the changes in status of attributes can then be used to 

solve for the design variables. In other words, the changes in attributes in the scorecards are used 

as a guidance for the designers to optimize for design variables. This chapter addresses the issues 

with using scorecards and attempts to tackle research question 2 by emphasizing the need for a 

holistic framework that enables more realistic and informed design decision-making by providing 

an architecture for system optimization in a hierarchically decomposed system. 

 

Optimization using Scorecards 

 

An example of a scorecard associated with Satellite transponders subsystem, subsystem 

level 2 (SL2), subsystem 1 (SS1), associated with the satellite system shown in Fig. 5.2 can be 

seen in Table 6.1 [105]. 
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Table 6.1: SL2, SS1 Scorecard  – Satellite system 

 

Attributes 

Change 

in 

status 

x Gradient = 

Change 

in 

Value 

∑(
𝑉𝑎𝑙𝑢𝑒 
𝐼𝑚𝑝𝑎𝑐𝑡

) 

Mtrans -0.15 x [
𝑑𝑉

𝑑𝑀𝑡𝑟𝑎𝑛𝑠
]
0
= −500  = 75 

3.40 × 104 
Ppayload -13.32 x [

𝑑𝑉

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
]
0

= −2558  = 

3.40
× 104 

 

 

One of the ways to solve the design variables is setting up a sub-optimization problem (Eq. 

(6.2)), i.e., the change in status of the attributes represented in the scorecard is used as an objective 

function and/or as equality constraints to obtain the corresponding design variables. Another 

method for solving is using a nonlinear solver, by which the design variables are solved directly 

from the system of non-linear equations.  The following example demonstrates updating the design 

variables using scorecards.  Let us consider the scorecard with couplings associated with SL2, SS1 

in Table 6.1. The attribute Ppayload has a positive impact on the value if decreased as shown in Table 

6.2.  

Table 6.2: Scorecard - Optimization 

 

Attributes 
Change 

in status 
x Gradient = 

Change 

in Value 

Ppayload -13.32 x [
𝑑𝑉

𝑑𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑
]
0

= −2558  = 3.40
× 104 

 

From Eq. (6.1), it is clear that Ppayload is a function of two discrete design variables Amp and N and 

one continuous design variable, Pst.   

 𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑓(𝐴𝑚𝑝, 𝑁, 𝑃𝑠𝑡) =  𝑁 × (2.93 × 𝑃𝑠𝑡 + 12)  (6.1) 
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In order to obtain the corresponding values of these design variables from the change in Ppayload, a 

sub-optimization problem is setup as shown in Eq. (6.2), where N is assumed to be continuous.  

 

 𝑓𝑖𝑛𝑑 𝑋 = [𝑁, 𝑃𝑠𝑡]
𝑇 

𝑀𝑖𝑛 𝑓(𝑿) = 𝑁 × (2.93 × 𝑃𝑠𝑡 + 12) 

𝑠. 𝑡.  ℎ1: 𝑁 × (2.93 × 𝑃𝑠𝑡 + 12) − 1319.175 = 0 

 

(6.2) 

It is obvious from Table 6.3 that there is a huge discrepancy in obtaining the change in 

value when just the attribute impacts on value are used as a guidance. This huge discrepancy is a 

result of not capturing the true impacts of design variable on the overall system. In this example, 

the designer aims at reducing the Power required by the payload (Ppayload) by reducing the number 

of transponders (N) onboard the satellite and reducing the satellite transmitter power (Pst). The 

number of transponders actually is a revenue generating design variable, the true effect of which 

is not captured in the attribute impacts represented in the scorecard.  Thus, it has resulted in a loss 

in value as opposed to value gain. This is one of the major issues of using a scorecard in performing 

an optimization. This emphasizes a need for a more holistic framework that can address the issues 

faced while using a scorecard in the context of optimization, which leads to research question 2. 

The next section will be an attempt to address research question 2 by proposing a new framework. 

 

Table 6.3: Final Design – Optimization using Scorecard 
 

Initial design 

Change in 

status 

(∆𝑷𝒑𝒂𝒚𝒍𝒐𝒂𝒅) 

Final 

design 

Total change 

in value 

from 

scorecard 

Actual 

change in 

value 

% 

discrepancy 

N =  50 

-13.32 

N = 49.98 

3.40× 104 

 

-3.69×
104 

 

192% 
Pst = 5 Pst = 4.91 
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Value-Based Systems Engineering Framework 

As mentioned in the previous section, just the value impact of attributes is not enough in 

performing an optimization, as a more detailed capture of impacts of design variables is also 

needed. A new value-based systems engineering framework is created in attempt to address 

research question 2, as shown in Fig. 6.1 that addresses the issues with scorecards and aids in 

optimization of a hierarchically decomposed system. The framework only uses the attribute 

impacts on value for identification of significant attributes, as opposed to direct optimization in 

scorecards. Once the significant attributes are identified, the corresponding design variables are 

tracked down and the total change in value due to the design variables is calculated to see how the 

change in design variable impacts the value. Finally, the design variables are changed. This process 

is iterative and can be explained clearly using the flowchart in Fig. 6.1. In the real world, a large-

scale complex engineered system as a satellite consists of hundreds of design variables ranging 

from satellite bus configuration to bolt diameter. Therefore using the design variables directly by 

skipping identification of significant attributes increases the complexity. The identification of 

significant attributes enables the designers to focus on only certain design variables, thereby 

reducing the burden of taking all the design variables into account. An easier way to identify 

significant attributes is by visualizing the value impact of attribute. Next section of this chapter 

will focus on identifying significant attributes by visualization.  
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Figure 6.1: Value-based Systems Engineering Framework 

 

The framework starts with initializing a design and performing system analysis, the output of 

which is used to calculate the attributes at SL1. After system analysis, the global sensitivities of 

the behavior variables with respect to all the design variables at SL1 are obtained using the Global 

Sensitivity Method [36]. These global sensitivities will be used in calculating the total derivatives 

of value with respect to attributes and design variables in order to capture the physics-based 

couplings as well. After obtaining the attributes and global sensitivities of behavior variables, the 

next step is to calculate the total change in value due to attributes (∆𝑉𝐴𝑆𝐿1) at subsystem level 1 

using attribute and physics-based couplings. It should be noted that the subsystems at SL1 might 

need the attributes at lower levels as inputs. For example, the payload subsystem in Fig. 5.2 needs 
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Gst, an attribute at SL3 (Satellite transmitting antenna subsystem). Initially, these lower level 

attributes are assumed while calculating derivatives and are changed after updating the design.  

Once the significant attributes are determined from ∆𝑉𝐴𝑆𝐿1, the design variables associated with 

them are identified. The total derivatives associated with value with respect to those design 

variables are obtained next. After capturing all the impacts due to a particular design variable in 

the same manner as attributes the design variable is updated to result in a positive change (for 

maximization problems) in total value impact due to design variables (∆𝑉𝑋𝑆𝐿1) based on the total 

derivative. These updated design variables at SL1 are then flowed down to the lower levels. The 

lower level attributes are recalculated for the updated SL1 design variables and are passed back. 

Now, the assumed lower level attributes at SL1 are updated and this process is repeated again until 

SL1 is consistent with the lower level attributes. The final updated design variables at SL1 are then 

flowed down to SL2, where the whole process is repeated again as indicated in the flowchart. The 

design update process continues until the system is converged, thereby achieving an optimum. The 

design variables are updated based on the error as shown in Eq. 6.3. The error in Eq. 6.3 represents 

the discrepancy in value due to linearization compared to the actual value. The design variables 

are changed by 5% of their old values if the error is less than or equal to 3% and are changed by 

1% if the error due to linearization is more than 3%.  

 
∆𝑋 = {

0.05 × 𝑋𝑜𝑙𝑑            𝑒𝑟𝑟𝑜𝑟 ≤ 0.03
  0.01 × 𝑋𝑜𝑙𝑑           𝑒𝑟𝑟𝑜𝑟 > 0.03

 

𝑤ℎ𝑒𝑟𝑒: 

𝑒𝑟𝑟𝑜𝑟 =  𝑎𝑏𝑠 (
𝑉𝑎𝑙𝑢𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
) 

 

    

(6.3) 
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  Case study – Satellite system 

 Table 6.4 shows the optimized design for the hierarchically decomposed satellite system 

using the value-based systems engineering framework. The value function used here is Net Present 

Profit, which is described in Eq. (6.4) [12, 105, 106]. Equation (6.4) represents the top-level 

attributes, which the value function is formed from where TC is total cost and Rev is revenue.  

 

𝑉 = 𝑓(𝑇𝐶, 𝑅𝑒𝑣) = −𝑇𝐶 + ∑
𝑅𝑒𝑣𝑦

(1 + 𝑟𝑑)𝑦

𝑂𝐿

𝑦=1

 

𝑟𝑑: 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 = 10% 

𝑂𝐿:𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = 10 𝑦𝑒𝑎𝑟𝑠 

𝑦: 𝑦𝑒𝑎𝑟 

(6.4) 

Only the continuous design variables associated with the satellite system at all the levels are 

considered here for simplicity. This can be extended in a similar manner to discrete design 

variables as well. The only difference is replacing (
𝑑𝐴

𝑑𝑋
)  with ∆𝐴𝑋, where ∆𝐴𝑋 represents the total 

change in an attribute due to a change in the discrete design variable. This can be more clearly 

seen by comparing Eqs. (6.5) and (6.6).  

 
∆𝑉𝑋111 = [

𝜕𝑉

𝜕𝑋111
+

𝜕𝑉

𝜕𝐴011

𝑑𝐴011
𝑑𝑋111

+
𝜕𝑉

𝜕𝐴012

𝑑𝐴012
𝑑𝑋111

](𝑋111𝑛 − 𝑋1110)    
(6.5) 

 
∆𝑉𝑋112 =

𝜕𝑉

𝜕𝐴011
∆𝐴011𝑋112 +

𝜕𝑉

𝜕𝐴012
∆𝐴012𝑋112  

(6.6) 

 𝑊ℎ𝑒𝑟𝑒 ∆𝐴011𝑋112 = 𝐴011(𝑋112,𝐵, … ) − 𝐴011(𝑋112,𝐴) (6.7) 

Equation (6.5) represents the value impact of a continuous design variable and Eq. (6.6) represents 

the value impact of a discrete design variable. Equation (6.7) represents the total change in attribute 
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A011 with respect to the discrete design variable X112. Here X112,A represents discrete choice A and 

X112,B represents choice B. In this satellite example, the discrete design variables represent mostly 

technology choices associated with a subsystem. For example, the design variable Amp associated 

with the Payload subsystem, as described in Appendix, represents the type of high power amplifier 

onboard the satellite. The two options considered for Amp in this example are Solid State 

Amplifier (SSA) and TWTA (Travelling Wave Tube Amplifier). These discrete design variables 

can be updated by calculating the value impact. This will also be useful in evaluating new 

technologies. Further analysis of discrete design variable in the value-based systems engineering 

framework is left for future work.  

The final design obtained using the VBSE framework is presented in Table 6.4. The 

continuous design variables are grouped based on the tiers. The third column in Table 6.4 

represents the initial design, which is chosen at random. The next column represents the final 

design obtained using the value-based systems engineering framework. The Net Present Profit 

(system value) associated with the final design obtained using the framework is around $325M as 

seen in the table. Since, the new framework uses linearized value functions, there were errors 

associated with the final value. The error due to linearization was around 2.3% for the final design. 

The error percentages varied through cycles that determined the change in the design variables, as 

shown in Eq. 6.3.  

 

 

 

 

 



www.manaraa.com

90 

 

 

 

Design improvement with respect to the optimization cycles using the VBSE framework is shown 

in Fig. 6.2. It is clear from the figure that the overall system value increases as the optimization 

progresses.  For comparison, the hierarchically decomposed satellite problem was modelled as a 

single MDO problem with no hierarchy. The optimal design associated with the problem is 

provided in the last column of Table 6.4. The built-in Genetic Algorithm in MATLAB Global 

Optimization Toolbox was used for optimization as this problem involved a number of discrete 

design variables. The optimum discrete design variables obtained using GA are used as design 

choices for the VBSE framework as only continuous variables are used for optimization in the 

framework. It can be seen from Table 6.4 that the NPP associated with using the new framework 

has a relatively low error from the NPP using GA. However, the values of some of the design 

Table 6.4: Optimization using VBSE framework 

 

Subsystem 

 level 
Design variables 

Initial  

design 

Final design 

using VBSE 

Optimal 

design using 

Genetic  

Algorithm 

 

 

 

SL1 

Satellite long. 100°W 85.12°W 301.33°W 

Ground long. 100°W 81.97°W 97.57°W 

Ground lat. 40°N 25.23°N 39.42°N 

Ground long. 

 receiving 

75°W 80.71°W 104.98°W 

Ground lat.  

receiving 

40°N 25.23°N 37.33°N 

 

SL2 

Pst 50 W 5 W  5 W 

Pgt 500 W 300 W 865.97 W 

 

 

 

SL3 

fdown 50 GHz 100 GHz 96.02 GHz 

Dst 5 m 0.50 m 0.12 m 

Dsr 5 m  0.40 m 0.12 m 

Dgt 15 m 2.54 m 12.63 m 

fup 50 GHz 100 GHz 81.40 GHz 

Dgr 15 m 2.54 m 2.77 m 

𝑽𝒏 = 𝑽𝟎 + ∆𝑽𝑻𝒐𝒕𝒂𝒍 - - $325.34M - 

𝑽𝒂𝒄𝒕𝒖𝒂𝒍 - $181.57M $318.04M $319.16M 

% error due to 

linearization 

- - 2.3 % - 
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variables obtained using the VBSE framework are vastly different compared to the results using 

GA. One of the reasons for this difference in design variable values is linearization as it leads to 

local minimum, which depends on the initial design point. When initialized with different design 

points, the optimum values for the design variables using the VBSE framework changed with the 

Net Present Profit (Value) being close to $318 million.  Another reason is the internal trade-offs 

occurring between design variables. For instance, in Table 6.4, the optimum value for Dst (diameter 

of satellite transmitting antenna) is 0.5 m using the VBSE framework as compared to 0.12 m using 

GA. The difference in this design variable is compensated by Dgt (diameter of ground transmitting 

antenna). In other words, there is a balance between Dst and Dgt as these design variables affect the 

signal to noise ratio (SNR), which in turn affects the Net Present Profit. Additionally, the VBSE 

framework aims at maximizing the anticipated value (Vn) that is the summation of value from 

previous cycle (V0) and the change in value in the current cycle (∆VTotal) due to the change in 

design variables at all levels. The anticipated value (Vn) is the outcome of a linearization process 

in the VBSE framework, which differs from the actual value (Vactual) obtained by a complete 

system analysis.  
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Figure 6.2: Optimization using VBSE framework 

Even though the new framework has limitations because of errors due to linearization and common 

optimization concerns such as local minimum, it is the first step towards incorporating principles 

of VDD in current systems engineering processes by replacing communication of requirements 

with communication of value functions. The new framework enables consistent and more informed 

design decision-making in a hierarchical organization, where the designers at all the levels are 

aware of the impacts of their design decisions on the system value. As mentioned before, it is 

challenging to identify the significant attributes, especially in LSCES like satellites and aircrafts 

where the number of attributes may range from hundreds to thousands. The focus of next section 

is on a visualization tool that can aid designers in identifying these attributes easily.  

 

Decision Support using Visualization 

The VBSE framework involves a step of identifying significant attributes, which is a 

mathematically tedious process. In the real world, it is difficult to pick attributes using just numbers 

(total derivatives) particularly when many attributes exist. An easier way to identify significant 
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attributes is to visualize the value impact of the attributes.  The visualization of the attributes in 

this section aids the designers in identifying the important attributes as shown in Fig. 6.3 and also 

will aim at providing a greater understating of attribute relationships as shown in Fig. 6.4 [106, 

107]. Figure 6.3 is a combination of a bar chart and parallel coordinate plot. The bars represent the 

normalized global sensitivities of each subsystem level 1 attribute with respect to the system value, 

and the parallel coordinate plot shows how changes in these attributes affect the value function. 

Both plots describe sensitivities; one through the mathematical relationships that exist in the 

background equations (total derivatives) and one through the analytical results of the value 

function. Using these plots together affords the designer a more holistic understanding of the 

sensitivities of the value function to each attribute. It is clearly apparent from the derivative bar 

charts, that attributes associated with the Power and Launch vehicle subsystems have large 

normalized global derivatives. From the parallel coordinate plot, it can be seen that these attributes 

also have low value variability. Therefore, the value function is relatively sensitive to changes in 

the Power and Launch vehicle subsystems. Whereas, the signal-to-noise ratios (SNRdown and 

SNRup) have low normalized global sensitivity values and large value variability in the parallel 

coordinate plot. Therefore, the value function is relatively insensitive to changes in the signal-to-

noise ratios after a certain range. From this figure it is seen that the attributes that have higher 

value impacts at subsystem level 1 are Cpower and CLV. The plots in Fig. 6.3 tell us there is potential 

for higher value change, by focusing on these significant attributes, in an understandable way.  
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Figure 6.3. (Top) Total sensitivities of SL1 attributes with respect to Value (Bottom) 

Parallel Coordinate Plot of SL1 Attributes 

 

The visual design structure matrix (VDSM) is an interactive DSM that allows the designer 

to select which subsystem relationships they would like to analyze. Figure 6.4 shows a sample 

VDSM with four subsystem attributes: Array Size, Propellant Mass, Transponder Mass, and 

Payload Power. The total derivative of each attribute with respect to value (
𝑑𝑉

𝑑𝐴
) , change the size 

of each box. The propellant mass has the greatest effect on the total value, and the transponder 

mass and payload power have the lowest effects. This is due to the background cost function which 

is greatly affected by the mass of the propellant. The lines that connect each attribute box represent 

their local derivatives. These lines change thickness based on the strength of the local coupling. 

The placement of the line, above or below the box, represents the direction of the local coupling. 
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For example, the thick line between array size and payload power corresponds to a strong local 

derivative. Within the value space, the output of the payload power has a strong effect on the array 

size, but a small effect on the propellant mass. 

 
Figure 6.4. VDSM of four subsystem attributes 

 

The VDSM provides a tool for a designer to analyze all of the couplings within a system. 

The interactive nature of the VDSM allows the designer to target specific subsystems or disciplines 

and enhance their understanding of the sensitivities. This will allow designers to make decisions 

on suspension/elimination of couplings to reduce computational cost [37, 38]. Suspension of 

couplings using visualization is left for future work. This chapter has focused on enabling 

consistency in design decision-making associated with communication of system preference and 

consistency in physics by proposing a Value-Based Systems Engineering (VBSE) framework 

thereby tackling research question 2 by providing a framework for system optimization in a 

hierarchically decomposed environment. The next chapter will focus on quantifying the 



www.manaraa.com

96 

 

uncertainties present, propagating them throughout the system and finally will explore how a 

consistency in preferences towards risk can be achieved using the VBSE framework. 
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CHAPTER 7 

CONSISTENCY IN RISK PREFERENCES 

The design process associated with Large-Scale Complex Engineered Systems (LSCES) involves 

a number of individuals making decisions at all the levels of the hierarchy in an organization. 

Previous chapters addressed consistency issues in communicating stakeholder’s preference(s) in 

decision-making by ensuring consistency in physics of the system using the Value-Based Systems 

Engineering (VBSE) framework thereby addressing research questions 1 and 2. The focus of this 

chapter is to address research question 3 on enabling consistency in both risk and value preferences 

throughout the system, when uncertainties are present, using the VBSE framework. As mentioned 

before in the background section, it is straightforward to choose between designs when the 

alternatives are deterministic. It becomes challenging when uncertainties are involved as the 

attitude of individual designers towards uncertainty or risk becomes an important aspect. As the 

design of LSCES involves hundreds to thousands of decision makers, it is therefore very critical 

to capture and communicate the risk preferences of the stakeholder to result in a desired design. 

The failure to communicate risk preferences will result in designers using their own preference 

towards uncertain designs, resulting in a system design that is not preferred by the stakeholder. 

This chapter will first demonstrate the effect of risk bias on uncertain design alternatives and then 

will explore the VBSE framework in enabling consistency in both value and risk preferences 

throughout the system by bringing together Value-Driven Design (VDD), Multidisciplinary 

Design Optimization (MDO) and Decision Analysis (DA). As seen in the previous chapters and 

the background section, VDD ensures consistency in communication of system value preferences, 

MDO enables consistency in physics across the system and DA provides a framework for decision-

making under uncertainty. The ultimate goal of this chapter is to exploit the complimentary nature 
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of these three areas to achieve a holistic framework that will enable consistency in decision-

making. The higher fidelity satellite system, described in Chapter IV will be used as a test case 

here to demonstrate the importance of capturing and communicating risk preferences.  

 

Impact of Risk Bias on Decision-Making 

Four different design alternatives with varying degrees of uncertainties associated with 

continuous design variables, for the satellite example described in Chapter IV, are considered here 

to demonstrate the impact of risk preferences on design with uncertainties. Design alternative 1 

has less uncertainty associated with it compared to alternatives 2-4, however design alternatives 

2-4 have regions in the distribution that may yield higher valued outcomes. The uncertainties in 

the design variables are propagated using Monte-Carlo sampling method [52, 53], with a sample 

size of 100000. Figure 7.1 shows the probability distribution of Net Present Value, in dollars, 

associated with each of the design alternatives after being propagated throughout the system.  It 

can be seen from Fig. 7.1 that design alternative 1 is less risky (narrower distribution) compared 

to others.  

 

Figure 7.1: Probability Distributions of Design 

Alternatives on Value 
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Table 7.2 represents four different cases of utility functions representing varying risk 

preferences. These are some of the commonly used utility functions in literature [13, 108, 109]. 

Utility functions specific to an individual can be modeled by conducting numerous lotteries on the 

individual. Readers are referred to [71] for experimental methods to elicit risk preferences. 

Modeling a completely new utility function is out of the scope of this research. For demonstration 

purposes, existing utility functions are used here and the corresponding parameters of the utility 

functions are modified to result in a desired risk preference. For example, for the utility function 

listed as case 3 in Table 7.2, the risk parameters “𝛼 =  −0.2” and “𝛼 =  0.5” represent higher and 

lower degrees of risk aversion. This can also be seen in Fig. 7.2a and Fig. 7.2b, where the curvature 

changes according to the risk preference. The utility curve becomes flatter, closer to risk neutral 

preference (which will be a straight line across the curve), with lower degrees of risk aversion as 

seen in the figure. Convex curves represent a risk-loving attitude.  

 

 

 
Figure 7.2a: Less Risk Averse Utility Function 
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Figure 7.2b. Higher risk averse utility function 

 

 

As people are usually risk averse, utility functions that are only risk averse are considered 

here. These four cases represent different degrees of risk aversion, as people tend to differ in their 

risk attitude. For example, a stakeholder compared to a designer at a lower level may be less risk 

averse in his preferences. Cases 1-2 represent utility functions with constant absolute risk aversion, 

i.e., the risk attitude will remain the same with change in wealth (value). The parameter ‘a’ is 

varied in cases 1-2 to result in varying degrees of constant absolute risk aversion. Case 1 represents 

a lower risk aversion, whereas case 2 represents higher risk aversion. Cases 3-4 represent utility 

functions with decreasing degree of absolute risk aversion. The individual with decreasing degree 

of absolute risk aversion will become less risk averse with increase in wealth (value). This can be 

seen in Table 7.1. Table 7.1 demonstrates the effect of decreasing absolute risk aversion on the 

selection of design alternatives. Alternatives 1 and 2 associated with Fig. 7.1 are considered here. 

As mentioned before, alternative 1 is less risky but has lower expected outcome, whereas 

alternative 2 is more risky and has higher expected outcome. One of the discrete design variables 

(Number of transponders, N) of the design alternatives is changed to yield a higher expected 



www.manaraa.com

101 

 

outcome, such that there is no change in the probability distribution itself, but just in the expected 

outcome. As can be seen in Table 7.1, two different cases of expected outcome (~127 M$ and 

~251 M$) are used to demonstrate the difference in varying degree of absolute risk aversion. For 

the case with lower expected outcome (~127 M$), the chosen design alternative is 1 for both 

constant and decreasing absolute risk aversion, whereas for the case with higher expected outcome 

(~251 M$), the design alternatives chosen for constant absolute risk aversion and decreasing 

absolute risk aversion are 1 and 2 respectively. The reason for this change in design alternative 

associated with “decreasing degree of absolute risk aversion” utility function is due to the decrease 

in risk aversion with increase in wealth (value). It is also clear by comparing the certainty 

equivalents of the two utility functions in Table 7.1, associated with the higher expected outcome 

design alternatives, that the designers with a decreasing degree of absolute risk aversion would 

pay more (~254 M$) for alternative 2 as compared to design alternative 1 (~251 M$). Even though 

design alternative 2 is riskier comparatively, the designers still prefer it because of their decreasing 

degree of absolute risk aversion with increase in wealth.  
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Table 7.2 has the ranking of the design alternatives based on expected utility associated 

with each of the four utility functions. It can be seen from the table that the rank ordering has 

changed between cases 1 (higher risk aversion) and 2 (lower risk aversion) due to a change in risk 

preference. The risk preference is changed by manipulating the parameter “a”, which reflects the 

constant degree of risk aversion associated with cases 1 and 2.  As case 1 represents individuals 

with higher risk aversion compared to case 2, design alternative 1 was chosen as it is less risky 

compared to other alternatives. Case 2 represents comparatively lesser risk averse individuals, 

which resulted in design alternative 2 being chosen. Cases 3 and 4 represent higher risk averse 

individuals. Also for case 3, the parameter ‘𝛼’ can be changed to represent desired risk aversion.  

 

 

 

 Table 7.1 Decreasing degree of absolute risk aversion 

 

Utility 

function 

Co-

efficient 

of 

absolute 

risk 

aversion 

(Ra) 

Cases Alternative 

Expected 

outcome in $ 

(Mean) 

Certainty 

Equivalent 

in $ 

Expected 

Utility 

Chosen 

design 

alternative 

𝑼(𝑽) =

−
𝟏

𝒂
𝒆−𝒂𝑽 

(Constant 

absolute risk 

aversion) 

a = 9e-7 

Lower exp. 

outcome 

alternatives 

1 127.23e+6 125.92e+6 -66.71e-45 
1 

2 127.41e+6 121.52e+6 -3.51e-42 

 

Higher exp. 

outcome 

alternatives 

1 251.73e+6 249.49e+6 -33.52e-93 
1 

2 251.87e+6 242.58e+6 -16.86e-90 

 

𝑼(𝑽) =
𝟏

𝜶
𝑽𝜶 

(Decreasing 

degree of 

absolute risk 

aversion) 

𝛼 =  −0.2 

Lower exp. 

outcome 

alternatives 

1 127.23e+6 127.26e+6 -0.119681 
1 

2 127.41e+6 127.23e+6 -0.119688 

 

Lower exp. 

outcome 

alternatives 

1 251.73e+6 251.96e+6 -0.1044 
2 

2 251.87e+6 254.39e+6 -0.1042 



www.manaraa.com

103 

 

 

It can be seen from this simple demonstration that there is a need to capture risk preferences 

carefully in decision-making when uncertainties are present. This example emphasizes the 

necessity for having a rigorous mathematical foundation for decision-making to reflect the 

preferences of an individual towards risk. It is also crucial to have consistent risk preferences in a 

hierarchically decomposed system in order to result in a system actually desired by the stakeholder. 

The focus of the next section will be on communication of risk preferences using the VBSE 

framework.   

 

 

 

Table 7.2. Impact of Risk Bias 

 

Cases 

Utility 

function 

 

U(V) 

Util. 

function 

parameter 

Co-

efficient 

of 

absolute 

risk 

aversion 

(Ra) 

Design 

ranking 

Certainty 

Equivalent 

in $ 

Expected 

utility 

Expected 

Outcome in 

$ (Mean) 

Chosen 

design 

alternative 

Case 1 

(constant 

absolute risk 

aversion) 

 

−
1

𝑎
𝑒−𝑎𝑉 

 

 

a = 9e-7 

(higher risk 

aversion) 

N/A 

1 125.92e+6 -66.71e-45 127.23e+6 

1 
2 121.52e+6 -3.511e-42 127.41e+6 

4 118.15e+6 -72.94e-42 125.70e+6 

3 117.33e+6 -152.8e-42 126.42e+6 

 

Case 2 

(constant 

absolute risk 

aversion) 

−
1

𝑎
𝑒−𝑎𝑉 

 

 

a = 1e-7 

(lower risk 

aversion) 

N/A 

2 126.70e+6 -31.41 127.23e+6 

2 
1 126.25e+6 -32.87 127.41e+6 

4 125.96e+6 -33.83 125.70e+6 

3 125.17e+6 -36.61 126.42e+6 

 

Case 3 

(decreasing 

absolute risk 

aversion) 

1

𝛼
𝑉𝛼 

 
𝛼 =  −0.2 

(1 − 𝑎)

𝑉
 

1 127.26e+6 -0.119681 127.23e+6 

1 
2 127.23e+6 -0.119688 127.41e+6 

4 125.49e+6 -0.120018 125.70e+6 

3 125.44e+6 -0.119837 126.42e+6 

 

Case 4 

(decreasing 

absolute risk 

aversion) 

 

ln (𝑉) 
 

N/A 1/V 

1 127.26e+6 18.6618 127.23e+6 

1 
2 127.22e+6 18.6615 127.41e+6 

4 125.49e+6 18.6478 125.70e+6 

3 126.44e+6 18.6553 126.42e+6 
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Value-Based Systems Engineering Framework (VBSE) with Uncertainties 

 

In the previous section, we found that with varying risk preferences under uncertainty, the 

designers tend to choose completely different designs. When this is expanded to the hierarchically 

decomposed satellite system, there will be inconsistency in the design due to people at different 

levels of hierarchy. The focus of this section will be on using the VBSE framework to optimize 

the satellite system when uncertainties are present by enabling consistency in risk preferences in 

addition to achieving consistency in physics and communication of preferences (as discussed in 

Chapter 6). In Chapter 6, the decomposed value functions were used to communicate system 

preference, whereas in this section, utility functions will be used to communicate both the risk and 

system preference. Designers/managers at each level will have their own risk preference towards 

uncertain designs. It will be demonstrated using the satellite example that the final design obtained 

using the VBSE framework will be completely different if designers at different tiers tend to use 

their own utility functions instead of a consistent utility function that captures both risk and value 

preference of the stakeholder. 

A modified VBSE framework that enables communication of both value and risk 

preferences using utility functions is shown in Fig. 7.3. The framework works in a similar manner 

to the deterministic case (Chapter 6). The key difference here is on the updating of design variables. 

The design variables are updated at each level based on the change in expected utility (∆𝐸(𝑈)) 

associated with each level, instead of change in value (∆𝑉), to result in an increase in overall 

expected utility. Similar to the previous section, only the uncertainties associated with the 

continuous design variables are considered and other uncertainties like satellite system model 

uncertainties are left for future work. The uncertainties are modelled using probability 
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distributions. For simplicity, the probability distributions considered here are triangular. Future 

work will be considering other probability distributions like normal, lognormal, Poisson, etc. 

 
Figure 7.3: Value-based Systems Engineering 

Framework 

 

 

 The distributions associated with design variables at subsystem level 2 (SL2) and 

subsystem level 3 (SL3) are set in such a way that the upper and lower bounds change with respect 

to the design variable value to account for machining tolerances and transmitter power 

accountability. For example, in the case of design variable Dst (diameter of satellite transmitting 
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antenna), the distribution is set to be narrower when the diameter is lower (say around 0.5 meters) 

and the distribution is set to be broader (say around 3 meters) to reflect machining tolerance of 

antenna, i.e., the higher the diameter, the higher the machining tolerance.  This can be seen in Fig. 

7.4. These distributions are then propagated using Monte-Carlo sampling at each level of the 

hierarchy as shown in Fig. 7.3. The design variables are changed by 5% of their old values if the 

error is less than or equal to 3% and are changed by 1% as shown if the error is greater than 3% in 

Eq. 7.1. The number of design cycles performed are 30.  

 
∆𝑋 = {

0.05 × 𝑋𝑜𝑙𝑑            𝑒𝑟𝑟𝑜𝑟 ≤ 0.03
  0.01 × 𝑋𝑜𝑙𝑑           𝑒𝑟𝑟𝑜𝑟 > 0.03

 

𝑤ℎ𝑒𝑟𝑒: 

𝑒𝑟𝑟𝑜𝑟 =  𝑎𝑏𝑠 (
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑉𝐵𝑆𝐸 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑈𝑡𝑖𝑙𝑖𝑡𝑦
) 

(7.1) 

 

 
Figure 7.4. Distributions associated with Dst 
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Table 7.3 shows the designs associated with two different utility functions with varying degrees 

of risk aversion. The framework is initialized with the same initial design as in the deterministic 

case (Table 6.4). The uncertainties in the design are propagated using Monte-Carlo method with a 

sample size of 10000. Case 1 in the Table 7.3 represents a utility function with decreasing degree 

of risk aversion (case 4 in Table 7.2). It is assumed that all the designers at one particular level 

have the same risk preference for simplicity. Modeling the risk preference of designers associated 

with each subsystem is left for future work. Cases 1.a and 1.b in Table 7.3 represent scenarios with 

the same risk preference at all the three levels of the hierarchy, where the risk parameter ‘𝛼 ’ has 

the same value, with case 1.a being more risk averse compared to 1.b. This means that the risk 

preferences of the designers at all the levels are consistent with the stakeholder. Case 1.c in the 

table represents a scenario where the designers tend to decide on their own risk preference. It can 

be seen from Table 7.3 that each of these cases (Case 1.a – 1.c) have completely different designs 

due to the variation in risk preferences. In case 1.a, designers at levels SL2 and SL3 tend to pick 

designs with lower uncertainty, as they are more risk averse compared to case 1.b, where the risk 

aversion is very low. As discussed before, the uncertainty associated with the design variables 

increase with increase in their values as shown in Fig. 7.4. Since only the uncertainties associated 

with the diameters and transmitter powers (shown in red in Table 7.3) were modeled that way, 

there is a vast difference in values associated with those design variables. In case 1.c, the designers 

at each level make decisions based on their own risk preference as seen in Table 7.3, where there 

is a huge discrepancy in the final design compared to case 1.b. Similarly case 2 in Table 7.3 

represents a scenario where the designers at SL1 and other levels have completely different utility 

functions, i.e., SL1 has a utility function associated with case 2 from Table 7.2, whereas SL2 and 

SL3 have utility functions associated with case 4 in Table 7.2. As designers at the lower levels are 
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usually more risk averse compared to a higher-level manager, they tend to choose designs that are 

not desired by the stakeholder as seen in Table 7.3.  

 

Table 7.3. VBSE framework with uncertainties 
 

Risk parameters 

Case 1.a: 

𝛼𝑆𝐿1 = −0.005 

𝛼𝑆𝐿2 = −0.005 

𝛼𝑆𝐿3 = −0.005 

Case 1.b: 

𝛼𝑆𝐿1 = 2 

𝛼𝑆𝐿2 = 2 

𝛼𝑆𝐿3 = 2 

Case 1.c: 

𝛼𝑆𝐿1 = 2 

𝛼𝑆𝐿2 = −0.005 

𝛼𝑆𝐿3 = −0.5 

Case 2 

aSL1 = 1e-7 

𝛼𝑆𝐿2 = 0.75 

𝛼𝑆𝐿3 = 0.75 

SL1 

Satellite 

longitude 
85.5°W 100°W 90°W 90°W 

Ground 

longitude 
94.5°W 100°W 90°W 110°W 

Ground 

latitude 
34.2°N 40°N 36°N 36°N 

Ground 

long. rec 
86.6°W 75°W 82.5°W 82.5°W 

Ground lat. 

rec 
34.2°N 40°N 36°N 36°N 

SL2 
Pst 7.8 W 42.75 W 6.79 W 6.12 W 
Pgt 300 W 427.5 W 300 W 300 W 

SL3 

fdown 55.55 GHz 50 GHz 55 GHz 55 GHz 
Dst 0.81 m 4.45 m 0.97 m 0.95 m 
Dsr 0.65 m 4.45 m 0.80 m 0.78 m 
Dgt 2.45 m 13.36 m 2.93 m 2.87 m 
fup 55.55 GHz 50 GHz 55 GHz 55 GHz 
Dgr 2.45 m 13.36 m 2.93 m 2.87 m 

 

The primary focus of this section has been on exploring how both risk and value 

preferences can be communicated using a utility function in a Value-Based Systems Engineering 

framework. Table 7.3 shows how design decisions vary when the risk preferences are inconsistent 

in a hierarchically decomposed environment where it is crucial to make decisions aligned with the 

stakeholder’s preference(s). This chapter has addressed research question 3, which focuses on 

overcoming consistency issues, associated with both value and risk preferences, in design 

decision-making in a complex system with uncertainties. This is achieved by capturing both the 

risk and value preferences using a utility function and decomposing it using the VBSE framework, 

which enables consistent design decision-making by providing a way for system optimization.  
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CHAPTER 8 

SUMMARY, CONCLUSION AND FUTURE WORK 

 

Summary and Conclusion 

 

Keeping in mind all the consistency issues that are faced while implementing a systems 

engineering process, an effort is being made to bring together all the components of the new design 

science of Large-Scale Complex Engineered Systems (LSCES), namely MDO, VDD and DA, that 

result in a better design by aiming at minimizing the schedule delays, cost overruns and 

maximizing the true preference.  This is achieved using the proposed Value-Based Systems 

Engineering (VBSE) framework that enables design decision-making that is consistent with both 

the value and risk preferences of the stakeholder.  This research has shown how different objective 

function formulations yield completely different designs and thereby has emphasized the 

importance of capturing the true preference(s) of the stakeholder using a value function. In addition 

to that, this research has also shown why communication of system preferences is important and 

how system preferences can be communicated using value functions. The issue of physics-based 

consistency in the context of value function decomposition has also been addressed to enable more 

realistic and informed design decision-making using the VBSE framework. The research has also 

investigated the effect of risk bias on the system design when uncertainties are present and has 

validated that a proper communication of both risk and value preferences is needed in an uncertain 

environment. 

 

Future Work  

 

Due to the variety of fields involved, there exist vast opportunities for future work. Future work 

concerning value function formulation will be on exploring the value formulation for a space 



www.manaraa.com

110 

 

exploration government satellite. This will focus on capturing attributes in a value function that 

are responsible for the overall effective success of the mission with low cost. In addition to that, 

translating requirements to value will be a huge part of future work to enable practical application 

in industries, as industries struggle to recognize the difference between multi-objective functions 

and value functions (author’s view). As mentioned in the previous chapters, the VBSE framework 

is just a first step in incorporating VDD principles in systems engineering. There exist plenty of 

opportunities in enhancing the framework to make it widely applicable. One of the focuses in the 

future will be on the incorporation of discrete design choices in the VBSE framework. The other 

major focus concerning the VBSE framework with uncertainties will be on the investigation of 

belief updating. It was assumed in this research that the higher level managers completely replace 

their beliefs on lower level attributes. However, in reality, the higher level managers have an initial 

belief on the lower level attribute based on experience or prior knowledge. These beliefs will then 

be updated based on where the information is coming from and type of information. For example, 

if the manager gets a new information based on an experimental test that is not so rigorous, his 

beliefs on the initial information will not be updated to a large extent. Belief updating can be done 

using Bayesian theorem.   

Future work will also involve modeling different uncertainties associated with the satellite 

model. Only uncertainties associated with the design variables were modeled in this research. 

Future work will explore other uncertainties like model-based, operational environment, etc. This 

research used the Monte-Carlo Sampling method for propagating uncertainties. This method is 

computationally expensive and therefore a lower order model with not much sacrifice in accuracy 

would be very handy. Response Surfaces will be modelled in the future to create lower order 

models that have similar behavioral response as the actual system.  



www.manaraa.com

111 

 

REFERENCES 

 

1. Hazelrigg, G.A., A framework for decision-based engineering design. Journal of 

mechanical design, 1998. 120: p. 653. 

2. Bloebaum, C.L., P. Collopy, and G.A. Hazelrigg, NSF/NASA Workshop on the Design of 

Large-Scale Complex Engineered Systems - From Research to Product Realization, in 

14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2012: 

Indianapolis, Indiana. 

3. Paul, C., A Research Agenda for the Coming Renaissance in Systems Engineering, in 

50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and 

Aerospace Exposition. 2012, American Institute of Aeronautics and Astronautics. 

4. Brown, O., P. Eremenko, and P. Collopy, Value-Centric Design Methodologies for 

Fractionated Spacecraft: Progress Summary from Phase I of the DARPA System F6 

Program. 2009. 

5. Becz, S., et al. Design system for managing complexity in aerospace systems. in 10th 

AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. 2010. 

6. Deshmukh, A. and P. Collopy. Fundamental Research into the Design of Large-Scale 

Complex Systems. in 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization 

Conference. 2010. Fort Worth, TX: AIAA. 

7. Collopy, P.D. and P.M. Hollingsworth, Value-Driven Design. Journal of Aircraft, 2011. 

48(3): p. 749-759. 

8. Buede, D.M., The Engineering Design of Systems : Models and Methods. Vol. 55. 2009: 

John Wiley & Sons. 

9. Martins, J. and A.B. Lambe, Multidisciplinary design optimization: Survey of 

architectures. AIAA Journal, 2012. 51(9): p. 2049-2075. 

10. Bloebaum, C., P. Hajela, and J. Sobieszczanski-Sobieski, Non-hierarchic system 

decomposition in structural optimization. Engineering Optimization+ A35, 1992. 19(3): 

p. 171-186. 

11. Sobieszczanski-Sobieski, J. and R.T. Haftka, Multidisciplinary aerospace design 

optimization: survey of recent developments. Structural and Multidisciplinary 

Optimization, 1997. 14(1): p. 1-23. 

12. Mesmer, B.L., C.L. Bloebaum, and H. Kannan, Incorporation of Value-Driven Design in 

Multidisciplinary Design Optimization, in 10th World Congress of Structural and 

Multidisciplinary Optimization (WCSMO). 2013: Orlando, Florida. 

13. Mesmer, B.L. and C.L. Bloebaum, Addressing Impact of Risk Bias in Design Through 

Decision Analysis in MDO/VDD Frameworks, in 10th World Congress of Structural and 

Multidisciplinary Optimization (WCSMO), Orlando, FL. 2013. 

14. Bernoulli, D., Specimen theoriae novae de mensura sortis. 1968: Gregg. 

15. Von Neumann, J. and O. Morgenstern, Theory of games and economic behavior. 2007: 

Princeton university press. 

16. Neumann, L.J. and O. Morgenstern, Theory of games and economic behavior. 1947: 

Princeton University Press Princeton, NJ. 

17. NASA, NASA Systems Engineering Handbook. Vol. NASA/SP-2007-6105 Rev1. 2007, 

Washington, D.C. 

18. INCOSE, INCOSE Systems Engineering Handbook v3.2. 2010, www.icose.org: 

International Council on Systems Engineering. 

http://www.icose.org/


www.manaraa.com

112 

 

19. Sage, A.P., Systems engineering. Vol. 6. 1992: John Wiley & Sons. 

20. Goode, H.H., R.E. Machol, and T. Teichmann, System Engineering: An Introduction to 

the Design of Large-Scale Systems. Physics Today, 2009. 10(9): p. 34-36. 

21. Blanchard, B.S., W.J. Fabrycky, and W.J. Fabrycky, Systems engineering and analysis. 

Vol. 4. 1990: Prentice Hall Englewood Cliffs, New Jersey. 

22. Yao, W., et al., Review of uncertainty-based multidisciplinary design optimization 

methods for aerospace vehicles. Progress in Aerospace Sciences, 2011. 47(6): p. 450-

479. 

23. Sobieszczanski-Sobieski, J., B.B. James, and M. Riley, Structural Optimization by 

Generalized, Multilevel Decomposition. NASA Technical Memorandum 87605, 1985. 

24. Bloebaum, C.L., P. Hajela, and J. Sobieszczanski-Sobieski, Non-Hierarchic System 

Decomposition in Structural Optimization. Engineering Optimization, 1992. 19(3): p. 

171-186. 

25. Hajela, P., C.L. Bloebaum, and J. Sobieszczanski-sobieski, Application of global 

sensitivity equations in multidisciplinary aircraft synthesis. Journal of Aircraft, 1990. 27: 

p. Medium: X; Size: Pages: 1002-1010. 

26. Hassan, R.A. and W.A. Crossley, Multi-objective optimization of communication 

satellites with two-branch tournament genetic algorithm. Journal of spacecraft and 

rockets, 2003. 40(2): p. 266-272. 

27. Bloebaum, C.L., Formal and heuristic system decomposition methods in 

multidisciplinary synthesis. 1991, University of Florida, Gainsville, Florida. 

28. Browning, T.R., Applying the design structure matrix to system decomposition and 

integration problems: a review and new directions. Engineering Management, IEEE 

Transactions on, 2001. 48(3): p. 292-306. 

29. Eppinger, S.D. and T.R. Browning, Design structure matrix methods and applications. 

2012: MIT press. 

30. Yassine, A., An introduction to modeling and analyzing complex product development 

processes using the design structure matrix (DSM) method. Urbana, 2004. 51(9): p. 1-17. 

31. Yassine, A. and D. Braha, Complex concurrent engineering and the design structure 

matrix method. Concurrent Engineering, 2003. 11(3): p. 165-176. 

32. Martins, J.R.R.A. and A.B. Lambe, Multidisciplinary Design Optimization: Survey of 

Architectures. AIAA Journal, 2012. 

33. Cramer, E., et al., Problem Formulation for Multidisciplinary Optimization. SIAM 

Journal on Optimization, 1994. 4(4): p. 754-776. 

34. Ruben, P., L. Hugh, and B. Kamran, Evaluation of Multidisciplinary Optimization 

Approaches for Aircraft Conceptual Design, in 10th AIAA/ISSMO Multidisciplinary 

Analysis and Optimization Conference. 2004, American Institute of Aeronautics and 

Astronautics. 

35. Marriage, C., Automatic Implementation of Multidisciplinary Design Optimization 

Architectures Using PiMDO. 2008: Library and Archives Canada = Bibliothèque et 

Archives Canada. 

36. Sobieszczanski-Sobieski, J., Sensitivity of complex, internally coupled systems. AIAA 

journal, 1990. 28(1): p. 153-160. 

37. English, K., C. Bloebaum, and E. Miller, Development of multiple cycle coupling 

suspension in the optimization of complex systems. Structural and Multidisciplinary 

Optimization, 2001. 22(4): p. 268-283. 



www.manaraa.com

113 

 

38. English, K., E. Miller, and C. Bloebaum. Total derivative based coupling suspension for 

system reduction in complex design. in Proc. of the Sixth AIAA/USAF/NASA/OAI 

Symposium on Multidisciplinary Analysis and Optimization, Seattle, WA. 1996. 

39. Wilmott, P., S. Howison, and J. Dewynne, The mathematics of financial derivatives: a 

student introduction. 1995: Cambridge University Press. 

40. Folland, G.B., Introduction to partial differential equations. 1995: Princeton University 

Press. 

41. Martins, J.R., P. Sturdza, and J.J. Alonso, The complex-step derivative approximation. 

ACM Transactions on Mathematical Software (TOMS), 2003. 29(3): p. 245-262. 

42. Martins, J.R., A Couple-Adjoint Method for High-Fidelity Aero-Structural Optimization, 

in Department of Aeronautics and Astronautics. 2002, Stanford Univesity. 

43. Collopy, P.D., C.L. Bloebaum, and B.L. Mesmer, The Distinct and Interrelated Roles of 

Value-Driven Design, Multidisciplinary Design Optimization, and Decision Analysis, in 

12th AIAA Aviation Technology, Integration and Operations (ATIO) Conference and 

14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2012, 

AIAA: Indianapolis, Indiana. 

44. Collopy, P.D., Economic-Based Distributed Optimal Design, in AIAA Space 2001 - 

Conference and Exposition. 2001: Albuquerque, NM. 

45. Thunnissen, D.P. Uncertainty classification for the design and development of complex 

systems. in 3rd annual predictive methods conference. 2003. 

46. Thunnissen, D.P., Propagating and mitigating uncertainty in the design of complex 

multidisciplinary systems. 2005, California Institute of Technology. 

47. Dhanesh, P., Reliability-based optimization for multidisciplinary system design. 2003, A 

PhD Dissertation submitted to the Graduate School of the University of Notre Dame, 

Indiana July. 

48. DeLaurentis, D.A. and D.N. Mavris. Uncertainty modeling and management in 

multidisciplinary analysis and synthesis. in AIAA Aerospace Sciences Meeting, Paper No. 

AIAA-2000–422. 2000. 

49. Batill, S.M., J.E. Renaud, and X. Gu, Modeling and simulation uncertainty in 

multidisciplinary design optimization. AIAA paper, 2000. 4803. 

50. Smith, N. and S. Mahadevan, Probabilistic methods for aerospace system conceptual 

design. Journal of spacecraft and rockets, 2003. 40(3): p. 411-418. 

51. Hassan, R. and W. Crossley, Spacecraft reliability-based design optimization under 

uncertainty including discrete variables. Journal of Spacecraft and Rockets, 2008. 45(2): 

p. 394-405. 

52. Helton, J.C., et al., Survey of sampling-based methods for uncertainty and sensitivity 

analysis. Reliability Engineering & System Safety, 2006. 91(10): p. 1175-1209. 

53. Landau, D.P. and K. Binder, A guide to Monte Carlo simulations in statistical physics. 

2014: Cambridge university press. 

54. Gu, X., et al., Worst case propagated uncertainty of multidisciplinary systems in robust 

design optimization. Structural and Multidisciplinary Optimization, 2000. 20(3): p. 190-

213. 

55. Cao, H. and B. Duan. Uncertainty analysis for multidisciplinary systems based on convex 

models. in 10th AIAA/ISSMO multidisciplinary analysis and optimization conference. 

2004. 

56. Park, G.-J., et al., Robust Design: An Overview. AIAA Journal, 2006. 44(1): p. 181-191. 



www.manaraa.com

114 

 

57. Beyer, H.-G. and B. Sendhoff, Robust optimization – A comprehensive survey. Computer 

Methods in Applied Mechanics and Engineering, 2007. 196(33–34): p. 3190-3218. 

58. Lee, B.D., S.C. Thompson, and C.J. Paredis. A Review of Methods for Design Under 

Uncertainty From the Perspective of Utility Theory. in ASME 2010 International Design 

Engineering Technical Conferences and Computers and Information in Engineering 

Conference. 2010. American Society of Mechanical Engineers. 

59. Padmanabhan, D., Reliability-based optimization for multidisciplinary system design. 

2003. 

60. Agarwal, H., Reliability based design optimization: formulations and methodologies. 

2004. 

61. Abelson, R.P. and A. Levi, Decision making and decision theory. Handbook of social 

psychology, 1985. 1: p. 231-309. 

62. MacCrimmon, K.R., Descriptive and normative implications of the decision-theory 

postulates. Risk and uncertainty, 1968. 3: p. 32. 

63. Kassouf, S.T., Normative decision making. 1970: Prentice Hall. 

64. Slovic, P., B. Fischhoff, and S. Lichtenstein, Behavioral decision theory. Annual review 

of psychology, 1977. 28(1): p. 1-39. 

65. Savage, L.J., The foundations of statistics. 1972: Courier Corporation. 

66. Gibbard, A. and W.L. Harper, Counterfactuals and two kinds of expected utility. 1981: 

Springer. 

67. Lewis, D., Causal decision theory. Australasian Journal of Philosophy, 1981. 59(1): p. 5-

30. 

68. Joyce, J.M., The foundations of causal decision theory. 1999: Cambridge University 

Press. 

69. Kahneman, D. and A. Tversky, Prospect theory: An analysis of decision under risk. 

Econometrica: Journal of the Econometric Society, 1979: p. 263-291. 

70. Fernandez, M.G., et al., Decision support in concurrent engineering–the utility-based 

selection decision support problem. Concurrent Engineering, 2005. 13(1): p. 13-27. 

71. Charness, G., U. Gneezy, and A. Imas, Experimental methods: Eliciting risk preferences. 

Journal of Economic Behavior & Organization, 2013. 87: p. 43-51. 

72. Boudjemai, A., et al. Small Satellite Structural Optimisation Using Genetic Algorithm 

Approach. in Recent Advances in Space Technologies, 2007. RAST '07. 3rd International 

Conference on. 2007. 

73. Ebrahimi, M., M. Farmani, and J. Roshanian, Multidisciplinary design of a small satellite 

launch vehicle using particle swarm optimization. Structural and Multidisciplinary 

Optimization, 2011. 44(6): p. 773-784. 

74. Hassan, R.A. and W.A. Crossley. Conceptual design of communication satellites with a 

genetic algorithm. in Proceedings–42nd AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics and Materials Conference. 2001. 

75. John, H., et al., Large-Scale MDO of a Small Satellite using a Novel Framework for the 

Solution of Coupled Systems and their Derivatives, in 54th AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics, and Materials Conference. 2013, American Institute of 

Aeronautics and Astronautics. 

76. Mosher, T. Spacecraft design using a genetic algorithm optimization approach. in 

Aerospace Conference, 1998 IEEE. 1998. 



www.manaraa.com

115 

 

77. Ravanbakhsh, A., M. Mortazavi, and J. Roshanian. Multidisciplinary design optimization 

approach to conceptual design of a leo earth observation microsatellite. in Proceeding of 

AIAA SpaceOps 2008 Conference. 2008. 

78. Richie, D.J., V.J. Lappas, and P.L. Palmer, Sizing/Optimization of a Small Satellite 

Energy Storage and Attitude Control System. Journal of Spacecraft and Rockets, 2007. 

44(4): p. 940-952. 

79. Wang, X.H., Y. Xu, and R.W. Xia, Multidisciplinary Design Optimization for an Earth 

Observation Satellite. Advanced Materials Research, 2012. 591: p. 132-135. 

80. Wu, W., et al., Satellite Multidisciplinary Design Optimization with a High-Fidelity 

Model. Journal of Spacecraft and Rockets, 2013. 50(2): p. 463-466. 

81. Wu, W.R., H. Huang, and B.B. Wu, Application of Multidisciplinary Design 

Optimization to a Resource Satellite. Applied Mechanics and Materials, 2012. 195: p. 

1066-1077. 

82. The MathWorks, I. MATLAB. 2015  

83. Clerc, M. and J. Kennedy, The particle swarm-explosion, stability, and convergence in a 

multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 

2002. 6(1): p. 58-73. 

84. Kennedy, J. and R. Eberhart. Particle swarm optimization. in Neural Networks, 1995. 

Proceedings., IEEE International Conference on. 1995. 

85. Veeramachaneni, K., et al. Optimization using particle swarms with near neighbor 

interactions. in Genetic and Evolutionary Computation—GECCO 2003. 2003. Springer. 

86. Suganthan, P.N. Particle swarm optimiser with neighbourhood operator. in Evolutionary 

Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. 1999. IEEE. 

87. Hassan, R.A. and W.A. Crossley, Spacecraft reliability-based design optimization under 

uncertainty including discrete variables. Journal of Spacecraft and Rockets, 2008. 45(2): 

p. 394-405. 

88. Futron, Space Transportation Costs: Trends in Price Per Pound to Orbit 1990-2000. 

2002, Futron Corporation: Bethesda, Maryland. 

89. Wertz, J. and W.J. Larson, Space Mission Analysis and Design. Vol. 8. 1999: Kluwer 

Academic Pub. 

90. Shishko, R., NASA systems engineering handbook. 1995. 

91. Saleh, J. and J. Torres Padilla, Beyond cost models: communications satellite revenue 

models. Integrating cost considerations into a value‐centric mindset. International 

Journal of Satellite Communications and Networking, 2007. 25(1): p. 69-92. 

92. Saleh, J., et al., Utilization Rates of Geostationary Communication Satellites: Models of 

Loading Dynamics. Journal of Spacecraft and Rockets, 2006. 43(4): p. 903-909. 

93. Saleh, J.H., Flawed metrics: Satellite cost per transponder and cost per day. Aerospace 

and Electronic Systems, IEEE Transactions on, 2008. 44(1): p. 147-156. 

94. Brathwaite, J. and J.H. Saleh, Value‐centric framework and pareto optimality for design 

and acquisition of communication satellites. International Journal of Satellite 

Communications and Networking, 2009. 27(6): p. 330-348. 

95. Samuelson, P.A., A Note on Measurement of Utility. The Review of Economic Studies, 

1937. 4(2): p. 155-161. 

96. Collopy, P.D., Aerospace System Value Models: A Survey and Ovservations, in AIAA 

Space 2009 - Conference and Exposition. 2009: Pasadena, CA. 



www.manaraa.com

116 

 

97. Ippolito Jr, L.J., Satellite communications systems engineering: atmospheric effects, 

satellite link design and system performance. Vol. 6. 2008: John Wiley & Sons. 

98. Maral, G. and M. Bousquet, Satellite communications systems: systems, techniques and 

technology. 2011: Wiley. com. 

99. Kannan, H., C. Bloebaum, and B. Mesmer. Incorporation of Coupling Strength Models in 

Decomposition Strategies for Value-Based MDO. in AIAA Aviation 2014 (15th 

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference). 2014. Atlanta, 

GA. 

100. Collopy, P. Economic-Based Distributed Optimal Design. in AIAA Space 2001- 

Conference and Exposition. 2001. Albuquerque, NM. 

101. Cheung, J., et al., Application of Value-Driven Design to Commercial AeroEngine 

Systems. Journal of Aircraft, 2012(3): p. 688-702. 

102. Mullan, C., et al. Surplus Value Sensitivity and Subsystem Analysis. in Air Transport and 

Operations: Proceedings of the Third International Air Transport and Operations 

Symposium 2012. 2012. IOS PressInc. 

103. Mullan, C., et al. A Study of Aircraft Susbsytem Impacts within a Value Driven Design 

Framework. in Air Transport and Operations: Proceedings of the Second International 

Air Transport and Operations Symposium 2011. 2011. Ios PressInc. 

104. Mesmer, B., C.L. Bloebaum, and H. Kannan, Incorporation of Value-Driven Design in 

Multidisciplinary Design Optimization for a Satellite System Application. submitted to 

Structural and Multidisciplinary Optimization, 2014. 

105. Kannan, H., C.L. Bloebaum, and B.L. Mesmer, Incorporation of Coupling Strength 

Models in Decomposition Strategies for Value-based MDO, in 15th AIAA/ISSMO 

Multidisciplinary Analysis and Optimization Conference. 2014, American Institute of 

Aeronautics and Astronautics. 

106. Kannan, H., C.L. Bloebaum, and B.L. Memser, Incorporation of Coupling Strength 

Models in a Value-based Systems Engineering framework for optimization, in AIAA 

Aviation 2015  (16th AIAA/ISSMO Multidisciplinary Analysis and Optimization 

Conference). 2015: Dallas, TX. 

107. Tibor, E., Visualization-Based Decision Support for Value-Driven System Design, in 

Aerospace Engineering. 2014, Iowa State University: Ames, Iowa. 

108. Pratt, J.W., Risk aversion in the small and in the large. Econometrica: Journal of the 

Econometric Society, 1964: p. 122-136. 

109. Cox, J.C. and V. Sadiraj, Implications of small-and large-stakes risk aversion for 

decision theory. Unpublished Manuscript, 2004. 

 

 



www.manaraa.com

117 

 

APPENDIX A 

LOWER FIDELITY SATELLITE MODEL 

 

Appendix A will discuss each of the satellite system subsystems, associated with the 

lower fidelity model, as well as define the equations used in each of the subsystem’s analysis. 

 

Variable Definitions 

The variables used for the VDD/MDO value function calculations are shown in the 

following table.  Referenced refers to [89]. 

 

 

Variables and 

Parameters 

Description Type Value 

A Rain attenuation in dB Calculated ---- 

Abus Surface area of the Spacecraft bus Calculated ---- 

Acr Cross sectional area of the bus in m2 Calculated ---- 

Asat trans Surface area of satellite transmitting 

antenna 

Calculated ---- 

Asat rec Surface area of satellite receiving 

antenna 

Calculated ---- 

Ap,SA Projected area of the insulated layers of 

Solar array 

Calculated ---- 

Ap,sat trans  Projected area of the insulated layers of 

Satellite transmitting antenna 

Calculated ---- 

Ap,sat rec  Projected area of the insulated layers of 

Satellite receiving antenna 

Calculated ---- 

Ap,bus Projected area of the insulated layers of 

Spacecraft bus 

Calculated ---- 

Aradiator,battery Area of radiator for battery Calculated ---- 

Aradiator,RW Area of radiator for reaction wheel Calculated ---- 

Aradiator,proptank Area of radiator for propellant tank Calculated ---- 

As Surface area of the satellite Calculated ---- 

BM Bending moment  Calculated ---- 

CADCS Cost of ADCS Calculated ---- 

Cg,ant Cost of ground antennae Calculated ---- 

Cg,transmitter Cost of ground transmitter Calculated ---- 

Cground support Cost of ground support and operations Calculated ---- 

Cintegration,test,assembly Cost of integration, test and assembly  Calculated ---- 
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Clv Cost of launch vehicle Calculated ---- 

Cpayload Cost of payload Calculated ---- 

Cpower Cost of power system Calculated ---- 

Cpropulsion Cost of propulsion system Calculated ---- 

Cstructures Cost of structures Calculated ---- 

Cthermal Cost of thermal system Calculated ---- 

DOD Depth of discharge Referenced 0.8 

E Young’s modulus Referenced 71.7 GPa 

FOSultimate Ultimate factor of safety Referenced 1.6 

FOSyield Yield factor of safety Referenced 1.4 

FS Solar flux Constant 1367 W/m2 

Ftu Ultimate tensile strength Referenced 572 MPa 

Fty Yield tensile strength Referenced 503 MPa 

Fultimate Ultimate load Calculated ---- 

Gground,rec Ground receiving antenna gain Calculated ---- 

Gground,trans Ground transmitting antenna gain Calculated ---- 

Gsat,rec Satellite receiving antenna gain Calculated ---- 

Gsat,trans Satellite transmitting antenna gain Calculated ---- 

H Discharging efficiency Assumed 94% 

ISP Specific Impulse of the propulsion 

system in seconds 

Assumed 300 s 

ISP,lv Specific Impulse of launch vehicle  in 

seconds 

Assumed 300 s 

Ix Mass moment of inertia of the 

spacecraft along the x-axis in kg-m2 

Calculated ---- 

Iy Mass moment of inertia of the 

spacecraft along the y-axis in kg-m2 

Calculated ---- 

Iz Mass moment of inertia of the 

spacecraft along the z-axis in kg-m2 

Calculated ---- 

Kb Boltzmann constant Constant 1.3807 × 10−23 

m2kg / s2K 

La Transmission path loss  0.890 

Laxial Axial load factor Referenced 6 

LBM Bending moment load factor Referenced 3 

Ll Lateral load factor  Referenced 3 

Ll,r Line loss between receiver & antenna Assumed 0.89 

Ll,t Line loss between transmitter & 

antenna 

Assumed 0.89 

LS,down Space loss (downlink) Calculated ---- 

LS,up Space loss (uplink) Calculated ---- 

MB Burnout mass considered in propulsion 

system in kg 

Calculated ---- 

MB,lv Burnout mass considered in the launch 

vehicle in kg 

Calculated ---- 

Mdry Dry mass of the spacecraft in kg Calculated ---- 
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Mins Mass of insulator Calculated ---- 

Mpropellant,lv Mass of propellant needed to get to 

GTO from launch station in kg 

Calculated ---- 

Mradiator Mass of radiator in kg Calculated ---- 

Msensors Mass of attitude sensors in kg Referenced 3 kg 

Mstructures Mass of the bus including the masses 

of only the subsystems inside the bus in 

kg 

Calculated ---- 

MS Margin of Safety Calculated ---- 

MS/C Spacecraft Mass in kg Calculated ---- 

P0 Power required by all the subsystems 

in W 

Calculated ---- 

Paxial Axial load Calculated ---- 

Pcr Critical buckling load Calculated ---- 

Peq Equivalent load Calculated ---- 

Pheater,battery Power required by heater for battery Calculated ---- 

Pheater,RW Power required by heater for reaction 

wheel 

Calculated ---- 

Pheater,proptank Power required by heater for propellant 

tank 

Calculated ---- 

PRW Power needed by RW motor Calculated ---- 

PSA Required solar array output in W Calculated ---- 

Psensors Power needed by sensors Assumed 10 W 

Pst Satellite transmitter power Assumed 30 W 

PF Packing factor Referenced 0.9 

Qint Internal heat generated Assumed 400 W 

R Desired data rate  Assumed 8 Mbps 

RM Mass ratio Calculated ---- 

r Radius of the orbit Calculated ---- 

RE Radius of earth Constant 6374.4 km 

Rlv Mass ratio for launch vehicle Calculated ---- 

SNRcomposite Composite Signal to Noise ratio  Calculated ---- 

SNRdown Signal to Noise ratio (downlink) Calculated ---- 

SNRup Signal to Noise ratio (uplink) Calculated ---- 

TD Total disturbance torque Calculated ---- 

TE Maximum eclipse time Referenced 1.2 hours 

Tg Gravity-gradient torque Calculated ---- 

Tbus,max Maximum operating temperature of 

spacecraft bus 

Referenced 50o C 

Tbatt,max Maximum operating temperature of 

battery 

Referenced 15o C 

TRW,max Maximum operating temperature of 

reaction wheel 

Referenced 50o C 

Tsensors,max Maximum operating temperature of 

attitude sensors 

Referenced 30o C 
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Tproptank,max Maximum operating temperature of the 

propellant tank 

Referenced 40o C 

Tsat trans,max Maximum operating temperature of the 

transmitting antenna 

Referenced 100o C 

Tsat rec,max Maximum operating temperature of 

receiving antenna 

Referenced 100o C 

TSA,max Maximum operating temperature of the 

Solar array 

Referenced 110o C 

Tbatt,min Minimum operating temperature of 

battery 

Referenced 0o C 

TRW,min Minimum operating temperature of 

reaction wheel 

Referenced -10o C 

Tsensors,min Minimum operating temperature of 

attitude sensors 

Referenced 0o C 

Tproptank,min Minimum operating temperature of 

propellant tank 

Referenced 15o C 

Tantenna,min Minimum operating temperature of 

both the antennae (receiving and 

transmitting) 

Referenced -100o C 

TSA,min Minimum operating temperature of the 

Solar array 

Referenced -150o C 

To Total orbital period Constant 24 hours 

TRW Reaction wheel torque needed  Calculated ---- 

TS Maximum sunlit time Calculated ---- 

Ts,down System noise temperature (downlink) Referenced 424 K 

TSP Torque due to solar radiation Calculated ---- 

Ts,up System noise temperature (uplink) Referenced 614 K 

Vbus Volume of the satellite bus in m3 Calculated ---- 

Vsub Sum of volume of all subsystems 

inside the bus in m3 

Calculated ---- 

bSA Width of solar array Calculated ---- 

c Velocity of light Constant 2.9978 x 108m/s 

 

deg Degradation Assumed 0.3 

eff𝑐𝑒𝑙𝑙 Cell efficiency Assumed 14% 

fnat,a  Natural frequency along axial 

direction  

Referenced 25 Hz 

fnat,l  Natural frequency along lateral 

direction  

Referenced 15 Hz 

ge Acceleration due to gravity on the 

surface of earth 

Constant 9.81 m/s2 

h0 Orbital altitude Constant 35786 m 

hc Charging efficiency  92% 

h Total angular momentum needed Calculated ---- 
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hD Angular momentum needed to counter 

disturbance torques 

Calculated ---- 

hp  Angular momentum needed for 

pointing accuracy 

Calculated ---- 

i Sun incidence angle  Referenced 23.5o 

lSA Length of solar array Calculated ---- 

q Surface sensitivity of the satellite Referenced 0.6 

r Distance from the center of earth to the 

satellite in m 

Calculated ---- 

temp Temperature effect Calculated ---- 

to Operating temperature of solar panels  Referenced 60oC 

tground,trans Thickness of ground transmitting 

antenna in m 

Assumed 0.1 m 

tground,rec Thickness of ground receiving antenna 

in m 

Assumed 0.1 m 

tref Reference temperature Referenced 28oC 

tSA Thickness of solar array  0.03 m 

treq,1 Thickness required for ultimate 

strength 

Calculated ---- 

treq,2 Thickness required for yield strength Calculated ---- 

tsat,rec Thickness of satellite receiving antenna Assumed 0.03 m 

tsat,trans Thickness of satellite transmitting 

antenna 

Assumed 0.03 m 

t1 Thickness to meet the axial natural 

frequency requirement 

 

Calculated ---- 

t2 Thickness to meet the lateral natural 

frequency requirement 

 

Calculated ---- 

α absorptivity of the insulating material 

 

Calculated ---- 

α

ε
 

Ratio between absorptivity and 

emissivity of the insulating material 

Referenced 0.5 

ΔV Change in velocity needed to get to 

Geo-stationary orbit from Geo transfer 

orbit (GTO) and to make orbital and 

attitude corrections 

Assumed 2000 m/s 

ΔVLEO Delta-V required to get to Geo transfer 

orbit (GTO) from launch station 

Assumed 10000 m/s 

ε emissivity of the insulating material Calculated ---- 

γ Parameter 1 for calculating buckling 

stress 

Calculated ---- 

εrad emissivity of the radiator Assumed 0.8 

ηground,rec Ground receiving antenna efficiency Assumed 60% 

ηground,trans Ground transmitting antenna efficiency Assumed 60% 
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ηsat,trans Satellite transmitting antenna 

efficiency 

Assumed 60% 

ηsat,rec Satellite receiving antenna efficiency Assumed 60% 

θ Maximum deviation from the vertical Assumed 1o 

θd Pointing accuracy needed Assumed 0.1o 

λ𝑑𝑜𝑤𝑛 Downlink wavelength in m Calculated ---- 

λup Uplink wavelength in m Calculated ---- 

μ Gravitational constant of earth Constant 3.986 x 1014m3/
s2 

ρ Density of the material used for 

satellite bus 

Referenced 2810 kg/m3 

ρ𝐵𝑎𝑡𝑡𝑒𝑟𝑦 Density of the battery Referenced 3500 kg/m3 

ρ𝑅𝑊 Density of reaction wheel material Referenced 2800 kg/m3 

ρ𝑝𝑟𝑜𝑝 Density of the propellant Referenced 1021 kg/m3 

 ρground,rec Density of ground receiving antenna in 

kg 

Referenced 
2800

kg

m3
 

 ρground,trans Density of ground transmitting antenna 

in kg 

Referenced 
2800

kg

m3
 

 ρsat,rec Density of satellite receiving antenna in 

kg 

Referenced 
2800

kg

m3
 

 ρsat,trans Density of satellite transmitting 

antenna in kg 

Referenced 
2800

kg

m3
 

ρ𝑡𝑟𝑎𝑛𝑠 Density of satellite transponders Referenced 
2700

kg

m3
 

σ Stefan Boltzmann constant Constant 5.67051
× 10−8Wm−2K−4 

σcr Buckling stress Calculated ---- 

φ Parameter 2 for calculating buckling 

stress 

Calculated ---- 

 

Payload 

The payload for a communications satellite contains transponders and antennas.  The 

function of a transponder is to serve as a communication channel between the uplink and the 

downlink antennas.  Antennas receive and transmit signals. The analysis equations of the 

payload are given as follows. 

 

Downlink: 

λ𝑑𝑜𝑤𝑛 =
c

f𝑑𝑜𝑤𝑛
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Gsat,trans = ηsat,trans (
(π × Dsat,trans)

λdown
)

2

 

  

Gground,rec = ηground,rec (
(π × Dground,rec)

λdown
)

2

 

 

LS,down = (
c

4×π×h×f𝑑𝑜𝑤𝑛
)
2

  

 

𝑆𝑁𝑅𝑑𝑜𝑤𝑛:
Eb
N0

=
Pst × Ll,t × Gsat,trans × LS,down × La × Gground,rec × Ll,r

Kb × Ts,down × R
 

 

Uplink: 

λ𝑢𝑝 =
c

f𝑢𝑝
 

 

Gground,trans = ηground,trans (
(π × Dground,trans)

λ𝑢𝑝
)

2

 

 

Gsat,rec =  ηsat,rec
(π×Dsat,rec)

λ𝑢𝑝

2

   

 

LS,up = (
c

4×π×h×f𝑢𝑝
)
2

  

 

𝑆𝑁𝑅𝑢𝑝:
Eb
N0

=
Pgt × Ll,t × Gground,trans × LS,up × La × Gsat,rec × Ll,r

Kb × Ts,up × R
 

 

   

𝑆𝑁𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =
𝑆𝑁𝑅𝑑𝑜𝑤𝑛×𝑆𝑁𝑅𝑢𝑝

1+𝑆𝑁𝑅𝑑𝑜𝑤𝑛+𝑆𝑁𝑅𝑢𝑝
 [89] 

 

A rain attenuation factor of (-A) is added to the Signal to Noise ratio in dB, for both 

uplink and downlink, when the frequency of transmission increases beyond 10 GHz. This factor 

is linearly dependent on the frequency. A simple empirical equation, given below, was derived 

for (A) based on the plots from references [89, 97, 98]. 

 

𝐴 = 10 × (6.8966 × 10−12 × 𝑓 + 0.9313) 𝑑𝐵 
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𝑀𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 =  𝜋 × 𝜌𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 × 𝑡𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 × (
𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2
)
2

 

 

𝑀𝑠𝑎𝑡,𝑟𝑒𝑐 =  𝜋 × 𝜌𝑠𝑎𝑡,𝑟𝑒𝑐 × 𝑡𝑠𝑎𝑡,𝑟𝑒𝑐 × (
𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
2

)
2

 

 

𝑀𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠 = 3 ×
𝑃𝑡
30

 

 

Mpayload = 𝑀𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 +𝑀𝑠𝑎𝑡,𝑟𝑒𝑐 +𝑀𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠 

 

Ppayload = (1.95 × 𝑃𝑡) + 6.5 (linear approximation[89]) 

 

𝑉𝑡𝑟𝑎𝑛𝑠 =
𝑀𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠

𝜌𝑡𝑟𝑎𝑛𝑠
 

 

 

Propulsion 

The propulsion system consists of small thrusters that are used for station keeping. This 

subsystem aids the satellite in maintaining the desired trajectory, controlling spin and 

maintaining three-axis stability. The analysis equations of the propulsion system are given 

below. 

 

𝑀𝐵 = 𝑀𝑆/𝐶 −𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 

 

𝑅𝑀 = e
(
∆V
Ispge

)
 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 = (𝑅𝑀 ×𝑀𝐵) − 𝑀𝐵 

 

𝑉𝑝𝑟𝑜𝑝 =
𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 ×𝑀𝑎𝑟𝑔𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

ρ𝑝𝑟𝑜𝑝
 

 

Where: 

Margin factor = 1.1 
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Power 

The power subsystem consists of batteries, solar panels and other power generating 

sources. The power subsystem provides all the subsystems and the payload with power.  The 

design of this subsystem is governed by the power needed by the other subsystems. The analysis 

equations of the power subsystem are given below. 

 

P0 = PADCS + PPayload + PThermal 

 

 𝑇𝑆 = 𝑇𝑜 − 𝑇𝐸   

PSA = P0 + P0 × (
TE
TS
) (

1

H × h𝑐
) 

 

MSA = 0.04 × PSA (approximation [89]) 

 

𝐴𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 =
[

PSA
{(1−deg)×(1−temp)}

]

F𝑆×cos(i)×eff𝑐𝑒𝑙𝑙×PF
       Where:  𝑡𝑒𝑚𝑝 = (𝑡0 − 𝑡𝑟𝑒𝑓) × 0.005 

 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
P0×TE

(DOD)×H
  W-hr 

 

MBattery =
Battery capacity

 ℰ
 

 

 

𝑀𝑃𝑜𝑤𝑒𝑟 = 𝑀𝑆𝐴 +𝑀𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

 

𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦 =
M𝐵𝑎𝑡𝑡𝑒𝑟𝑦

ρ𝐵𝑎𝑡𝑡𝑒𝑟𝑦
 

 

Attitude Determination and Control 

The Attitude Determination and Control Subsystem (ADCS) consists of sensors such as 

star trackers and solar trackers to track the attitude and orientation of the spacecraft.  The ADCS 

also contains components to control the attitude and orientation of the satellite such as 

momentum wheels, gyros and thrusters.  The analysis equations of the ADCS are given as 

follows. 
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𝑟 = (ℎ0 + 𝑅𝐸) 
 

𝑇𝑔 =
3 × μ × |Iz − Iy| × sin(2θ)

2 × r3
 

 

The moment of inertia of the satellite was calculated based on the configuration in Fig. 4. 
 

 
Fig. 4: Satellite configuration 

 
𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 +𝑀𝑏𝑎𝑡𝑡𝑒𝑟𝑦 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 +𝑀𝑏𝑢𝑠 

 
Moments of Inertia of the bus: 

 

𝐼𝑥𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 =
𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 × (3 × 𝑟𝑠

2 + (𝑟𝑠 − 𝑡𝑠)
2 + 𝐿𝑠

2)

12
 

 
𝐼𝑦𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = 𝐼𝑥𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 

 

𝐼𝑧𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 =
𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 × (𝑟𝑠

2 + (𝑟𝑠 − 𝑡𝑠)
2)

2
 

 
Moments of Inertia of Solar array: 

 

𝑏𝑆𝐴 = √
𝐴𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

6
   [89] 

 
𝑙𝑆𝐴 = 3 × 𝑏𝑆𝐴 (𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 

 
 

𝐼𝑥𝑆𝐴 =
1

12
× 𝑀𝑆𝐴 × (𝑡𝑆𝐴

2 + 𝑙𝑆𝐴
2) 
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𝐼𝑦𝑆𝐴 =
1

12
× 𝑀𝑆𝐴 × (𝑏𝑆𝐴

2 + 𝑡𝑆𝐴
2) 

 

𝐼𝑧𝑆𝐴 =
1

12
× 𝑀𝑆𝐴 × (𝑏𝑆𝐴

2 + 𝑙𝑆𝐴
2) + (𝑟𝑠 + 𝑙𝑆𝐴)

2 ×𝑀𝑆𝐴 

 
Moments of Inertia of payload: 

 
Transmitting antenna: 

 
 

𝐼𝑥𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 =
1

12
× 𝑀𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 × (3 × 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2 + 𝑡𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠
2)

+ 𝑀𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 × (
𝑡𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2
+
𝐿𝑠
2
)
2

 

 
𝐼𝑦𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 = 𝐼𝑥𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 

 

𝐼𝑧𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 =
𝑀𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2
× (

𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠
2

)
2

 

 
Receiving antenna: 

 

𝐼𝑥𝑠𝑎𝑡,𝑟𝑒𝑐 = 𝑀𝑠𝑎𝑡,𝑟𝑒𝑐 × (
𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
2

)
2

+𝑀𝑠𝑎𝑡,𝑟𝑒𝑐 × (
𝑡𝑠𝑎𝑡,𝑟𝑒𝑐
2

+
𝐿𝑠
2
)
2

 

 
𝐼𝑦𝑠𝑎𝑡,𝑟𝑒𝑐 = 𝐼𝑥𝑠𝑎𝑡,𝑟𝑒𝑐 

 

𝐼𝑧𝑠𝑎𝑡,𝑟𝑒𝑐 =
1

12
× 𝑀𝑠𝑎𝑡,𝑟𝑒𝑐 × (3 × 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐

2 + 𝑡𝑠𝑎𝑡,𝑟𝑒𝑐
2) 

 
𝐼𝑥 = 𝐼𝑥𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 𝐼𝑥𝑆𝐴 + 𝐼𝑥𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 + 𝐼𝑥𝑠𝑎𝑡,𝑟𝑒𝑐 

 
𝐼𝑦 = 𝐼𝑦𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 𝐼𝑦𝑆𝐴 + 𝐼𝑦𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 + 𝐼𝑦𝑠𝑎𝑡,𝑟𝑒𝑐 

 
𝐼𝑧 = 𝐼𝑧𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 𝐼𝑧𝑆𝐴 + 𝐼𝑧𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 + 𝐼𝑧𝑠𝑎𝑡,𝑟𝑒𝑐 

 
𝑇𝑆𝑃 ≈ 0.3 × 𝐹 (𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 [34]) 

 
Where:  

𝐹 =
Fs
c
× As × (1 + q) × cos(i) 

 
As = (2 × Ls × rs) + (2 × lSA × bSA) + (tsat,trans  ×  Dsat,trans) + (tsat,rec  ×  Dsat,rec) 
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𝑇𝐷 = 𝑇𝑆𝑃 + 𝑇𝑔 

 
TRW = 𝑇𝐷 ×𝑀𝑎𝑟𝑔𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

Where: 
Margin Factor = (1.3)[89] 

 

hd = (
TRW × 24 × 60 × 60

4
) × 0.707 

 

ℎ𝑝 =
TRW × 24 × 60 × 60 × 180

4 × θd × π
 

 
Total angular momentum needed by RW:  

 
h = hd + hp 

 

 MRW =
(h+44)

22.2
  (obtained from linear interpolation[89]) 

 
Total mass of ADCS:  

 
MADCS =  MRW + Msensors 

 

PRW =
(h+39.56)

3.996
   (linear interpolation[89]) 

 
Total power required by ADCS:  

 
PADCS = PRW + Psensors 

 

𝑉𝑅𝑊 =
M𝑅𝑊

ρ𝑅𝑊
 

 
 

Thermal Control 

The satellite will be exposed to high and low temperature extremes during its operational 

lifetime. The operating temperature of most of the subsystems and the payload are not in this 

range.  A thermal shield must be provided for all the components of the satellite to function 

properly.  Thermal control of the satellite can be accomplished by using insulators, radiators and 

heaters. The analysis equations of the thermal subsystem are given as follows.  The operating 
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temperature ranges of all the components were assumed.  The emissivity was assumed the same 

value for all the components.  

It was assumed that only the components which are directly exposed to sunlight required 

insulators or thermal finishes (Solar array, Transmitting antenna, Receiving antenna and 

Spacecraft bus) , whereas the other important internal components required heaters and radiators 

to operate in the extreme temperature range. The internal components considered were Battery, 

Reaction wheel and Propellant tank.  

 

 

 

Insulators: 

 

Solar array: 

𝐴𝑝,𝑆𝐴 =
σ × T𝑆𝐴,𝑚𝑎𝑥

4 × Array size

F𝑆 ×
α
ε

 

Transmitting antenna: 

𝐴𝑝,𝑠𝑎𝑡 𝑡𝑟𝑎𝑛𝑠 =
σ × T𝑠𝑎𝑡 𝑡𝑟𝑎𝑛𝑠,𝑚𝑎𝑥

4 × A𝑠𝑎𝑡 𝑡𝑟𝑎𝑛𝑠

F𝑆 ×
α
ε

 

Where:  

A𝑠𝑎𝑡 𝑡𝑟𝑎𝑛𝑠 = (2 × 𝜋 × (
𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2
)
2

)

+ (2 × 𝜋 × (
𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2
) × 𝑡𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠) 

Receiving antenna: 

𝐴𝑝,𝑠𝑎𝑡 𝑟𝑒𝑐 =
σ × T𝑠𝑎𝑡 𝑟𝑒𝑐,𝑚𝑎𝑥

4 × A𝑠𝑎𝑡 𝑟𝑒𝑐

F𝑆 ×
α
ε

 

Where:  

A𝑠𝑎𝑡 𝑟𝑒𝑐 = (2 × 𝜋 × (
𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
2

)
2

) + (2 × 𝜋 × (
𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
2

) × 𝑡𝑠𝑎𝑡,𝑟𝑒𝑐) 

Spacecraft bus: 

𝐴𝑝,𝑏𝑢𝑠 =
σ × T𝑏𝑢𝑠,𝑚𝑎𝑥

4 × A𝑏𝑢𝑠

F𝑆 ×
α
ε

 

Where:  

A𝑏𝑢𝑠 = (2 × 𝜋 × 𝑟𝑠
2) + (2 × 𝜋 × 𝑟𝑠 × 𝐿𝑆) 
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𝑀𝑖𝑛𝑠 = 0.73 × (𝐴𝑝,𝑆𝐴 + 𝐴𝑝,𝑠𝑎𝑡 𝑡𝑟𝑎𝑛𝑠 + 𝐴𝑝,𝑠𝑎𝑡 𝑟𝑒𝑐 + 𝐴𝑝,𝑏𝑢𝑠) 
 

 

Radiator: 

 

Battery: 

 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =
Qint

εrad×σ×T𝑏𝑎𝑡𝑡,𝑚𝑎𝑥
4 

 

Reaction Wheel (RW): 

 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑅𝑊 =
Qint

εrad×σ×T𝑅𝑊,𝑚𝑎𝑥
4 

 

Propellant tank: 

 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑝𝑟𝑜𝑝𝑡𝑎𝑛𝑘 =
Qint

εrad×σ×T𝑝𝑟𝑜𝑝𝑡𝑎𝑛𝑘,𝑚𝑎𝑥
4 

 

𝑀𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟 = 3.3 × (𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑅𝑊 + 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑝𝑟𝑜𝑝𝑡𝑎𝑛𝑘) 
 

 

 

Heater: 

 

Battery: 

 𝑃ℎ𝑒𝑎𝑡𝑒𝑟,𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 휀𝑟𝑎𝑑 × 𝜎 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑏𝑎𝑡𝑡𝑒𝑟𝑦 × 𝑇𝑏𝑎𝑡𝑡,𝑚𝑖𝑛
4 

 

Reaction Wheel (RW): 

 𝑃ℎ𝑒𝑎𝑡𝑒𝑟,𝑅𝑊 = 휀𝑟𝑎𝑑 × 𝜎 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑅𝑊 × 𝑇𝑅𝑊,𝑚𝑖𝑛
4 

 

Propellant tank: 

 𝑃ℎ𝑒𝑎𝑡𝑒𝑟,𝑝𝑟𝑜𝑝𝑡𝑎𝑛𝑘 = 휀𝑟𝑎𝑑 × 𝜎 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟,𝑝𝑟𝑜𝑝𝑡𝑎𝑛𝑘 × 𝑇𝑝𝑟𝑜𝑝𝑡𝑎𝑛𝑘,𝑚𝑖𝑛
4 

 

𝑀ℎ𝑒𝑎𝑡𝑒𝑟 ≈ 0 
 

Structures 

The satellite bus establishes the basic geometry of the satellite, which provides a physical 

presence for all the subsystems to be located. The structure and configuration of the bus plays a 

major role in the overall design of the satellite. The bus acts as a chassis for circuitry, computers, 

gyroscopes, etc.  A cylindrical bus is considered in the lower fidelity model. The analysis 

equations for the structures subsystem are given as follows. 
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Estimation of length and radius of the bus: 

 

Vbus = Margin factor × V𝑠𝑢𝑏 
Where: 

Margin factor = 1.2 

 

V𝑠𝑢𝑏 = 𝑉𝑝𝑟𝑜𝑝 + 𝑉𝑡𝑟𝑎𝑛𝑠 + 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦 + 𝑉𝑅𝑊 

 

rs =
Ls
3
 (assumption) 

 

Ls =
𝑉𝑏𝑢𝑠

𝜋 × (𝑟𝑠)2
 

 

Ls = [(9 ×
Vbus
π
)
1/3

] 

 

 

Structure sizing for rigidity to meet the natural frequency requirements: 

 

t1 = 
(𝑓𝑛𝑎𝑡,𝑎/0.25)

2×𝑀𝑆/𝐶×𝐿𝑆

2𝜋𝑟𝑆𝐸
 

 

t2 = 
(𝑓𝑛𝑎𝑡,𝑙/0.56)

2×𝑀𝑆/𝐶×𝐿𝑆
3

𝜋𝑟𝑆3×𝐸
 

 

Structure sizing for tensile strength: 

 

𝑃𝑎𝑥𝑖𝑎𝑙 = 9.81 × 𝑀𝑆/𝐶 × 𝐿𝑎𝑥𝑖𝑎𝑙  
 

𝐵𝑀 = 9.81 × 𝑀𝑆/𝐶 ×
𝐿𝑆
2
× 𝐿𝐵𝑀 

 

Peq  =  Paxial +  
2 × BM

rs
 

 

Fultimate =  Peq  ×  FOSultimate 

 

Thickness required: 

 

treq,1   =  
     Fultimate

Ftu × (2π × rs)
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treq,2    =  
    Peq  ×   FOSyield

Fty × (2π × rs)
 

 

Thickness:  

 

𝑡𝑠 = max (𝑡1, 𝑡2, 𝑡𝑟𝑒𝑞,1, 𝑡𝑟𝑒𝑞,2) 
 

Sizing for Stability (Compressive Strength): 

 

σcr  =  0.6 ×  γ ×
E × 𝑡𝑠
rs

 

Where:  

γ  =  1 − 0.901 × ( 1 − e−φ ) 

φ  =   
1

16
√
rs
ts

 

 

Pcr =  A𝑐𝑟  × σcr 
Where: 
𝐴𝑐𝑟 = 2 × 𝜋 × 𝑟𝑠 × 𝑡𝑠 

 

The bus must be capable of withstanding the applied load, i.e. ., Peq . If   Pcr < 𝐹𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 ,  then 

the structure is not adequate. Thickness should be changed in order to make the structure 

adequate. Structure adequacy means that the Margin of Safety (MS) of the structure should be 

positive. MS can be obtained by the following equation.  

 

MS  =  
Pcr

𝐹𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒
 − 1 

 

The thickness of the structure should be changed until the MS value reaches positive value or the 

desired limit.  

 

Mass of the bus:  

 

Mbus   =  ρ × π × Ls × (𝑟𝑠
2 − (𝑟𝑠 − 𝑡𝑠)

2) 
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Launch Vehicle 

The launch vehicle subsystem consists of an apparatus that delivers the satellite to a 

desired orbit.  The selection of the launch vehicle, not addressed in the lower fidelity model, is 

greatly influenced by the altitude of the orbit, type of orbit (i.e., GEO, Molniya or Sun-

synchronous), and the mass and dimensions of the spacecraft. The higher fidelity model deals 

with launch selection. 

 

𝑀𝐵,𝑙𝑣 = 𝑀𝑆/𝐶 

 

 𝑅𝑙𝑣 = 𝑒
(

ΔVLEO
(Isp,lv)×ge

)
 

 

Mass of propellant needed to get to GTO:  

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡,𝑙𝑣 = [(𝑅𝑙𝑣 ×𝑀𝐵,𝑙𝑣) − 𝑀𝐵,𝑙𝑣] ×  Margin factor      Where: Margin factor = 1.2 

 

 

Cost Model 

 

𝑀𝑆/𝐶 =  Mpropellant +Mthermal +MSA +MBattery +Mbus +MADCS +Mpayload   

 

𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 353.3 × Mpayload 

 

𝐶𝑙𝑣 = (10000 × 𝑀𝑆/𝐶) + (100 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡,𝑙𝑣)   

 

𝐶𝑝𝑜𝑤𝑒𝑟 = (−926 +  396(MSA + MBattery)
0.72

) + (−210631 + 213527 × Array Size0.0066)

+ (375 + 494 (
Battery Capacity

50
)
0.754

) + 100 × ℰ 

    

 

𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = (246 + 4.2 × M𝑡ℎ𝑒𝑟𝑚𝑎𝑙
2) + (−183 + 181 × P𝑇ℎ𝑒𝑟𝑚𝑎𝑙

0.22 ) 
 

𝐶𝐴𝐷𝐶𝑆 = 1358 + (8.58 × M𝐴𝐷𝐶𝑆
2) +  341 + (2651 ×  θ−0.5)  

 

𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = 157 × (Mbus
0.83)  

 

𝐶𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 = 65.6 + (2.91 × M𝑑𝑟𝑦
1.261)  

 Where: 
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M𝑑𝑟𝑦 = 𝑀𝑆/𝐶 −M𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡  

 

𝐶𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛,𝑡𝑒𝑠𝑡,𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦
= 989 + 0.215
× (𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐶𝑝𝑜𝑤𝑒𝑟 + 𝐶𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + 𝐶𝐴𝐷𝐶𝑆 + 𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
+ 𝐶𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒) 

 

𝐶𝑔,𝑎𝑛𝑡 = 10 × (𝜌𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 × 𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 × 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠
2 + 𝜌𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 × 𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐

× 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐
2) 

 

 

𝐶𝑔,𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 = 10 × P𝑔𝑡 

 

𝐶𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 9.262 × (𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐶𝑝𝑜𝑤𝑒𝑟 + 𝐶𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + 𝐶𝐴𝐷𝐶𝑆 + 𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 +

𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 𝐶𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒)
0.642

  

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 1.308 × (𝐶𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐶𝑝𝑜𝑤𝑒𝑟 + 𝐶𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + 𝐶𝐴𝐷𝐶𝑆 + 𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 +

𝐶𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 + 𝐶𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛,𝑡𝑒𝑠𝑡,𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 + 𝐶𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡)  
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APPENDIX B 

 

HIGHER FIDELITY SATELLITE MODEL 

 

Appendix B will discuss each of the satellite system subsystems, associated with the higher fidelity 

model, as well as define the equations used in each of the subsystem’s analysis. The following 

table identifies the attributes and design variable associated with each of the subsystems in Fig 3.4.  

 

 

 
Tiers Attributes Design variables 

SYSTEM (Geo Communication Satellite) 
Total cost, 

Revenue 

Single satellite or satellite 

constellation? 

 

 

 

 

 

 

Subsystem 

level 1 

(SS1) Payload Cpayload, SNRd 
N,Type of HPA, Satellite 

longitude 

(SS2) Ground Station Cground, SNRup 

Ground longituderec, Ground 

latituderec Ground longitudetrans, 

Ground latitudetrans 

(SS3) Power Cpower Type of power source 

(SS4) Propulsion 
CEngine/kg, 
Cpropulsion 

Type of liquid propulsion 

system(mono/bi) 

(SS5) ADCS CADCS Type of controller 

(SS6) Thermal Cthermal Type of passive thermal control 

(SS7) Structures Cstructures Configuration of bus 

(SS8) Launch vehicle CLV 

Launch site, Type of launch 

vehicle 

 

 

 

 

 

 

 

 

 

 

Subsystem 

level 2 

 

Payload 

(SS1) Satellite Transponders 
Mtrans, Ppayload, 

Vtrans 
Pst 

(SS2) Satellite antennae Csat,ant, Msat ant 
Antenna type (Parabolic/Helical 

antenna) 

 

Ground 

station 

(SS1) Ground transponder Cg,transmitter Pgt 

(SS2) Ground antennae Cg,antennae 
Antenna type (Parabolic/Helical 

antenna) 

Power 

(SS1) Solar Array 
CSA, Array size, 

MSA 
SA_material 

(SS2) Battery 

CBatt, Battery 

mass, Battery 

capacity, Vbatt 

Battery type 

Propulsion (SS1) Propellant 

Mpropellant, 

Vpropellant, 

CEngine, Cpropellant 

Propellant 

Thermal 

(SS1) Surface Finish Cthermalfinish (
𝛼
)
𝑆𝐴
, (
𝛼
)
𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

, (
𝛼
)
𝑠𝑎𝑡,𝑟𝑒𝑐

, (
𝛼
)
𝑏𝑢𝑠

  

(SS2)  Radiator and Heater 
Pthermal, Cradiator, 

Cheater, Mradiator 
휀𝑟𝑎𝑑𝑏𝑎𝑡𝑡𝑒𝑟𝑦 , 휀𝑟𝑎𝑑𝑅𝑊, 휀𝑟𝑎𝑑𝑝𝑟𝑜𝑝𝑡𝑎𝑛𝑘 

Structures (SS1) Bus Cbus/kg, Bus material 
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Subsystem 

level 3 

 

 

 

Satellite 

antennae 

(SS1) 

Satellite 

transmitting 

antenna 

Gst, Mst fdown,  Dst 

(SS2) 

Satellite 

receiving 

antenna 

Gsr, Msr Dsr 

 

 

Ground 

antennae 

 

 

(SS1) 

Ground 

transmitting 

antenna 

Mgt,Ggt Dgt, fup 

(SS2) 

Ground 

receiving 

antenna 

Mgr,Ggr Dgr 

Propulsion Propellant 
(SS1) 

Propellant 

tank 

Mproptank, 

Vproptank,Cproptank 
Propellant tank material 

 

Payload (SL1, SS1): 

 

𝐺 = 𝑆𝑎𝑡𝑙𝑜𝑛𝑔 − 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 

 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 =
180

𝜋
×

(

 
 
atan

(

 
 (𝑐𝑜𝑠(𝐺) × 𝑐𝑜𝑠(𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡) − 0.1512)

(√(1 − ((𝑐𝑜𝑠(𝐺))
2
× (𝑐𝑜𝑠(𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡))

2
)))

)

 
 

)

 
 

 

 

𝐺𝑟 = 𝑆𝑎𝑡𝑙𝑜𝑛𝑔 − 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟 

 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑟 =
180

𝜋
×

(

  
 
atan

(

  
 (𝑐𝑜𝑠(𝐺𝑟) × 𝑐𝑜𝑠(𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟) − 0.1512)

(√(1 − ((𝑐𝑜𝑠(𝐺𝑟))
2
× (𝑐𝑜𝑠(𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟))

2

)))
)

  
 

)

  
 

 

𝐸𝑏𝑁𝑜,𝑑𝑜𝑤𝑛 =
((𝑃𝑠𝑡) × 𝐿𝑙𝑡 × 𝐺𝑡𝑠𝑎𝑡 × 𝐿𝑠 × (𝑠𝑖𝑛(𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑟))

2
× 𝐿𝑎 × 𝐺𝑟𝑔𝑟𝑜𝑢𝑛𝑑 × 𝐿𝑙𝑟)

(𝑘𝑏 × 𝑇𝑠𝑑𝑜𝑤𝑛 × 𝑅)
 

 

𝑆𝑁𝑅𝑑𝑜𝑤𝑛 = 10 × log10(𝐸𝑏𝑁𝑜,𝑑𝑜𝑤𝑛) 
 

𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑀𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠 +𝑀𝑠𝑎𝑡,𝑎𝑛𝑡 

 

𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠 = {
500 × 𝑀𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠, 𝑖𝑓 𝑆𝑆𝐴

1000 × 𝑀𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠, 𝑖𝑓 𝑇𝑊𝑇𝐴
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𝐶𝑜𝑠𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝐶𝑜𝑠𝑡𝑠𝑎𝑡,𝑎𝑛𝑡 + 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠 

 

 

Payload (SL2, SS1) – Satellite Transponders 

 

If SSA 

𝑀𝑡𝑟𝑎𝑛𝑠 = {

𝑁 × 𝑃𝑠𝑡 , 𝑃𝑠𝑡 ≤ 10
0.5 × 𝑁 × 𝑃𝑠𝑡 , 𝑃𝑠𝑡 > 10 𝑎𝑛𝑑 𝑃𝑠𝑡 ≤ 35

  𝑁 × (0.04 × 𝑃𝑠𝑡 + 0.6), 𝑃𝑠𝑡 > 35 𝑎𝑛𝑑 𝑃𝑠𝑡 ≤ 60

𝑁 × (0.125 × 𝑃𝑠𝑡 + 4.5), 𝑃𝑠𝑡 > 60

 

 

𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑁 × (2.93 × 𝑃𝑠𝑡 + 12) 

 

If TWTA 

 

𝑀𝑡𝑟𝑎𝑛𝑠 = 𝑁 × (0.1111 × 𝑃𝑠𝑡 + 0.88888) 
 

𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑁 × (0.85 × 𝑃𝑠𝑡 + 12.5) 
 

𝑉𝑡𝑟𝑎𝑛𝑠 =
𝑀𝑡𝑟𝑎𝑛𝑠

2700
 

 

Payload (SL2, SS2) – Satellite Antenna 

 

𝑀𝑠𝑎𝑡,𝑎𝑛𝑡 = 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑,𝑟 +𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑,𝑡 

 

𝐶𝑜𝑠𝑡𝑠𝑎𝑡,𝑎𝑛𝑡 = {
400 × 𝑀𝑠𝑎𝑡,𝑎𝑛𝑡, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

2000 × 𝑀𝑠𝑎𝑡,𝑎𝑛𝑡, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
 

 

Payload (SL3, SS1) – Satellite transmitting antenna 

𝐿𝑠,𝑑𝑜𝑤𝑛 = (
𝑐

4 × 𝜋 × ℎ × 𝑓𝑑𝑜𝑤𝑛
)
2

 

 

𝐺𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 =

{
 
 

 
 𝜂𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠  (

𝜋 × 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠
𝜆𝑑𝑜𝑤𝑛

)
2

, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

6.2 × 𝜋2 × 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠
2 × 10 × 0.05 × (

𝑓𝑑𝑜𝑤𝑛
𝑐

)
3

, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

 

 

 

 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑,𝑡𝑟𝑎𝑛𝑠 = { 2800 × 𝜋 × 𝑡𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 × (
𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2
)
2

, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

2800 × 𝑁 × (𝜋 × 𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠 + 𝑆) × 𝑡𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
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𝐴 = {
10 × (6.8966 × 10−12 × 𝑓 + 0.9313), 𝑖𝑓 𝑓 > 10 × 109

1, 𝑖𝑓 𝑓 ≤ 10 × 109
 

 

Payload (SL3, SS2) – Satellite receiving antenna 

 

𝐺𝑠𝑎𝑡,𝑟𝑒𝑐 =

{
 
 

 
 𝜂𝑠𝑎𝑡,𝑟𝑒𝑐 (

𝜋 × 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
𝜆𝑢𝑝

)

2

, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

6.2 × 𝜋2 × 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
2 × 10 × 0.05 × (

𝑓𝑢𝑝

𝑐
)

3

, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

 

 

 

 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑,𝑟𝑒𝑐 = {
2800 × 𝜋 × 𝑡𝑠𝑎𝑡,𝑟𝑒𝑐 × (

𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
2

)
2

, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

2800 × 𝑁 × (𝜋 × 𝐷𝑠𝑎𝑡,𝑟𝑒𝑐 + 𝑆) × 𝑡𝑠𝑎𝑡,𝑟𝑒𝑐, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
 

 

 

 

Ground (SL1, SS1): 

 

𝑆𝑁𝑅𝑢𝑝 =
𝑃𝑔𝑡 × 𝐿𝑙𝑡 × 𝐺𝑡𝑔𝑟𝑜𝑢𝑛𝑑 × 𝐿𝑠,𝑢𝑝 × 𝐿𝑎 × 𝐺𝑟𝑠𝑎𝑡 × 𝐿𝑙𝑟

𝑘𝑏 × 𝑇𝑠𝑢𝑝 × 𝑅𝑢𝑝
 

𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑡𝑟𝑎𝑛𝑠

=

{
 
 
 
 

 
 
 
 
10 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡), 𝑖𝑓 66 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 ≤ 80 𝑎𝑛𝑑 25 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡 ≤ 35

8 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡), 𝑖𝑓 66 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 ≤ 80 𝑎𝑛𝑑 35 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡 ≤ 50

2 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡), 𝑖𝑓 80 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 ≤ 90 𝑎𝑛𝑑 25 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡 ≤ 35

1.5 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡), 𝑖𝑓 80 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 ≤ 90 𝑎𝑛𝑑 35 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡 ≤ 50

2.5 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡), 𝑖𝑓 90 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 ≤ 110 𝑎𝑛𝑑 25 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡 ≤ 35

(𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡), 𝑖𝑓 90 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 ≤ 110 𝑎𝑛𝑑 35 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡 ≤ 50

11 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡), 𝑖𝑓 110 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 ≤ 125 𝑎𝑛𝑑 25 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡 ≤ 35

2 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡), 𝑖𝑓 110 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔 ≤ 125 𝑎𝑛𝑑 35 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡 ≤ 50

 

 
𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑟𝑒𝑐

=

{
 
 
 
 

 
 
 
 
10 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡), 𝑖𝑓 66 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟𝑒𝑐 ≤ 80 𝑎𝑛𝑑 25 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟𝑒𝑐 ≤ 35

8 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡), 𝑖𝑓 66 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟𝑒𝑐 ≤ 80 𝑎𝑛𝑑 35 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟𝑒𝑐 ≤ 50

2 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡), 𝑖𝑓 80 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟𝑒𝑐 ≤ 90 𝑎𝑛𝑑 25 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟𝑒𝑐 ≤ 35

1.5 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡), 𝑖𝑓 80 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟𝑒𝑐 ≤ 90 𝑎𝑛𝑑 35 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟𝑒𝑐 ≤ 50

2.5 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡), 𝑖𝑓 90 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟𝑒𝑐 ≤ 110 𝑎𝑛𝑑 25 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟𝑒𝑐 ≤ 35

(𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡), 𝑖𝑓 90 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟𝑒𝑐 ≤ 110 𝑎𝑛𝑑 35 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟𝑒𝑐 ≤ 50

11 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡), 𝑖𝑓 110 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟𝑒𝑐 ≤ 125 𝑎𝑛𝑑 25 ≤ 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟𝑒𝑐 ≤ 35

2 × (𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡), 𝑖𝑓 110 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑜𝑛𝑔,𝑟𝑒𝑐 ≤ 125 𝑎𝑛𝑑 35 < 𝐺𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑡,𝑟𝑒𝑐 ≤ 50

 

 

𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑎𝑛𝑡 = 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡 

𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑟𝑒𝑐  
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Ground (SL2, SS1) – Ground transponders 

 

𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 = 10 × 𝑃𝑔𝑡 
 

Ground (SL2, SS2) – Ground antenna 

 

𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡 = {
10 ×𝑀𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

50 × 𝑀𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
 

 

𝐶𝑜𝑠𝑡𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐,𝑎𝑛𝑡 = {
10 × 𝑀𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

50 ×𝑀𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 , 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
 

 

Ground (SL3, SS1) – Ground transmitting antenna 

𝐿𝑠,𝑢𝑝 = (
𝑐

4 × 𝜋 × ℎ × 𝑓𝑢𝑝
)

2

 

 

 

𝐺𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 =

{
 
 

 
 𝜂𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 (

𝜋 × 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠

𝜆𝑢𝑝
)

2

, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

6.2 × 𝜋2 × 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠
2 × 10 × 0.1 × (

𝑓𝑢𝑝

𝑐
)

3

, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

 

 

 𝑀𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠

= { 2800 × 𝜋 × 𝑡𝑔𝑟𝑜𝑢𝑛𝑑 × (
𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠

2
)
2

, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

2800 × 10 × (𝜋 × 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑡𝑟𝑎𝑛𝑠 + 0.1) × 𝑡𝑔𝑟𝑜𝑢𝑛𝑑, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
 

 

 

𝐴𝑢𝑝 = {
10 × (6.8966 × 10−12 × 𝑓𝑢𝑝 + 0.93103), 𝑖𝑓 𝑓 > 10 × 109

1, 𝑖𝑓 𝑓 ≤ 10 × 109
 

 

 

Ground (SL3, SS2) – Ground receiving antenna 

 

𝐺𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 =

{
 
 

 
 

𝜂𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 (
𝜋 × 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐

𝜆
)
2

, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

6.2 × 𝜋2 × 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐
2 × 10 × 0.1 × (

𝑓

𝑐
)
3

, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
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 𝑀𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 = {
2800 × 𝜋 × 𝑡𝑔𝑟𝑜𝑢𝑛𝑑 × (

𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐

2
)
2

, 𝑖𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

2800 × 10 × (𝜋 × 𝐷𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒𝑐 + 0.1) × 𝑡𝑔𝑟𝑜𝑢𝑛𝑑, 𝑖𝑓 ℎ𝑒𝑙𝑖𝑐𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
 

 

 

 

Propulsion (SL1, SS1) 

 

𝑀𝐵 = 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 +𝑀𝑆𝐴 + 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑚𝑎𝑠𝑠 +𝑀𝐴𝐷𝐶𝑆 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 +𝑀𝑏𝑢𝑠 

 

𝐶𝑜𝑠𝑡𝑒𝑛𝑔𝑖𝑛𝑒𝑝𝑒𝑟𝑘𝑔 = {
1000, 𝑖𝑓 𝑀𝑜𝑛𝑜 − 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚
2000, 𝑖𝑓 𝐵𝑖 − 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚

 

 

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑠𝑡𝑒𝑛𝑔𝑖𝑛𝑒 + 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 + 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 

 

Propulsion (SL2, SS1) – Propellant 

 

𝑀𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 = 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 +𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 + 𝐸𝑛𝑔𝑖𝑛𝑒𝑚𝑎𝑠𝑠 
 

𝑉𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 =
𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 ×𝑀𝑎𝑟𝑔𝑖𝑛𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

𝜌𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡
 

 

𝐶𝑜𝑠𝑡𝑒𝑛𝑔𝑖𝑛𝑒 = 𝐶𝑜𝑠𝑡𝑒𝑛𝑔𝑖𝑛𝑒𝑝𝑒𝑟𝑘𝑔 × 𝐸𝑛𝑔𝑖𝑛𝑒𝑚𝑎𝑠𝑠 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 = (𝑅 ×𝑀𝐵 −𝑀𝐵) 
 

𝑅𝑀 = exp (
∆𝑉𝑡𝑜𝑡𝑎𝑙

(𝐼𝑠𝑝 × 𝑔𝑒)
) 

 

If Mono-propellant 

 

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 = {

2.48 × 7 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

0.453
, 𝑖𝑓 ℎ𝑦𝑑𝑟𝑎𝑧𝑖𝑛𝑒

4.50 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

0.453
, 𝑖𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒

 

 

𝜌𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 = {
1021, 𝑖𝑓 ℎ𝑦𝑑𝑟𝑎𝑧𝑖𝑛𝑒
1440, 𝑖𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒

 

 

𝐼𝑆𝑃 = {
220, 𝑖𝑓 ℎ𝑦𝑑𝑟𝑎𝑧𝑖𝑛𝑒
160, 𝑖𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒

 

 

𝐸𝑛𝑔𝑖𝑛𝑒𝑚𝑎𝑠𝑠 = {
10, 𝑖𝑓 ℎ𝑦𝑑𝑟𝑎𝑧𝑖𝑛𝑒
20, 𝑖𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒
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If liquid propellant 

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 =

{
 
 
 
 

 
 
 
 
2.48 × 4.5 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

0.453
, 𝑖𝑓 𝐿0 𝑎𝑛𝑑 𝐿𝐻

2.48 × 6.6 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

0.453
, 𝑖𝑓 𝑁2𝑂4𝑎𝑛𝑑 𝑀𝑀𝐻

2.48 × 20 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

0.453
, 𝑖𝑓 𝐹2 𝑎𝑛𝑑 𝑁2𝐻4

2.48 × 100 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

0.453
, 𝑖𝑓 𝑂𝐹2 𝑎𝑛𝑑 𝐵2𝐻6

 

 

𝜌𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 = {

358, 𝑖𝑓 𝐿0 𝑎𝑛𝑑 𝐿𝐻
1190, 𝑖𝑓 𝑁2𝑂4𝑎𝑛𝑑 𝑀𝑀𝐻
1310, 𝑖𝑓 𝐹2 𝑎𝑛𝑑 𝑁2𝐻4
1010, 𝑖𝑓 𝑂𝐹2 𝑎𝑛𝑑 𝐵2𝐻6

 

 

𝐼𝑆𝑃 = {

455.3, 𝑖𝑓 𝐿0 𝑎𝑛𝑑 𝐿𝐻
341.5, 𝑖𝑓 𝑁2𝑂4𝑎𝑛𝑑 𝑀𝑀𝐻
430.1, 𝑖𝑓 𝐹2 𝑎𝑛𝑑 𝑁2𝐻4
455.6, 𝑖𝑓 𝑂𝐹2 𝑎𝑛𝑑 𝐵2𝐻6

 

 

𝐸𝑛𝑔𝑖𝑛𝑒𝑚𝑎𝑠𝑠 = {

168, 𝑖𝑓 𝐿0 𝑎𝑛𝑑 𝐿𝐻
25, 𝑖𝑓 𝑁2𝑂4𝑎𝑛𝑑 𝑀𝑀𝐻
50, 𝑖𝑓 𝐹2 𝑎𝑛𝑑 𝑁2𝐻4
150, 𝑖𝑓 𝑂𝐹2 𝑎𝑛𝑑 𝐵2𝐻6

 

 

 

𝑑𝑝 = ∛(
6 × 𝑉𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

𝜋
) 

 

𝑉𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 =
(𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 ∗ 𝑀𝑎𝑟𝑔𝑖𝑛𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡)

𝜌𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡
 

 

𝐼𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 =
2

5
×𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 × (

𝑑𝑝

2
)
2

 

 

Propulsion (SL3, SS1) – Propellant tank 

 

𝐼𝑝𝑟𝑜𝑝,𝑡𝑎𝑛𝑘 =
8

15
× 𝜋 × 𝑟𝑜𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 × ((

𝑑𝑝 + 0.01

2
)
5

− (
𝑑𝑝

2
)
5

) 

 

𝜌𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡,𝑡𝑎𝑛𝑘 = {

2700, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚
7860, 𝑖𝑓 𝑆𝑡𝑒𝑒𝑙
2000, 𝑖𝑓 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
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𝑑𝑝 = ∛(
6 × 𝑉𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘

𝜋
) 

 

𝑉𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 =
𝜋

6
× ((𝑑𝑝 + 0.01)3 − 𝑑𝑝3) 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 = 𝑉𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 ∗ 𝑟𝑜𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 

 

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 = {

100 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘, 𝑖𝑓 𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚

10 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘, 𝑖𝑓 𝑠𝑡𝑒𝑒𝑙

500 × 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
 

 

Power (SL1, SS1) 

 

𝑃0 = 𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑃𝐴𝐷𝐶𝑆 + 𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 
 

𝐶𝑜𝑠𝑡𝑃𝑜𝑤𝑒𝑟 = {
𝐶𝑜𝑠𝑡𝑆𝐴 + 𝐶𝑜𝑠𝑡𝐵𝑎𝑡𝑡, 𝑖𝑓 𝑠𝑜𝑙𝑎𝑟 𝑎𝑟𝑟𝑎𝑦 𝑎𝑛𝑑 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

50 × 106, 𝑖𝑓 𝑛𝑢𝑐𝑙𝑒𝑎𝑟
 

 

Power (SL2, SS1) 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑃0 × 𝑇𝐸

𝐷𝑂𝐷 × 𝐻𝑏𝑎𝑡𝑡
 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑚𝑎𝑠𝑠 =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 

 

𝑉𝑏𝑎𝑡𝑡 =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑚𝑎𝑠𝑠

𝜌𝑏𝑎𝑡𝑡
 

 

𝐶𝑜𝑠𝑡_𝑏𝑎𝑡𝑡 = {

1000 × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑚𝑎𝑠𝑠, 𝑖𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑖𝑠 𝑁𝑖 − 𝐶𝑑
1500 × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑚𝑎𝑠𝑠, 𝑖𝑓 𝑁𝑖 − 𝐻2
1200 × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑚𝑎𝑠𝑠, 𝑖𝑓 𝐿𝑖 − 𝑖𝑜𝑛

 

 

𝐷𝑂𝐷 = {

0.5, 𝑖𝑓 𝑁𝑖 − 𝐶𝑑
0.7, 𝑖𝑓 𝑁𝑖 − 𝐻2
0.25, 𝑖𝑓 𝐿𝑖 − 𝑖𝑜𝑛

 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = {

40, 𝑖𝑓 𝑁𝑖 − 𝐶𝑑
60, 𝑖𝑓 𝑁𝑖 − 𝐻2
130, 𝑖𝑓 𝐿𝑖 − 𝑖𝑜𝑛
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𝜌𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = {

1250, 𝑖𝑓 𝑁𝑖 − 𝐶𝑑
3500, 𝑖𝑓 𝑁𝑖 − 𝐻2

2307.6, 𝑖𝑓 𝐿𝑖 − 𝑖𝑜𝑛
 

 

Power (SL2, SS1) 

 

𝑃𝑆𝐴 = 𝑃0 + 𝑃0 ×
𝑇𝐸

𝑇𝑆
×

1

𝐻 × ℎ
 

 

𝐴𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 =

(
𝑃𝑆𝐴

((1 − 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛)(1 − 𝑡𝑒𝑚𝑝𝑒𝑓𝑓𝑒𝑐𝑡))
)

𝑆𝑜𝑙𝑎𝑟 𝑓𝑙𝑢𝑥 × 𝑐𝑜𝑠𝑑(𝛼) × 𝑐𝑒𝑙𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 × 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟
 

 

𝑀𝑆𝐴 = 𝜌𝑆𝐴𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 × 𝑡𝑆𝐴 × 𝐴𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 
 

𝐶𝑜𝑠𝑡𝑆𝐴 = {

5 × 𝑃𝑆𝐴, 𝑖𝑓 𝑆𝑜𝑙𝑎𝑟 𝑎𝑟𝑟𝑎𝑦 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑠 𝑆𝑖𝑙𝑜𝑐𝑜𝑛 (𝑆𝑖)
20 × 𝑃𝑆𝐴, 𝑖𝑓 𝐺𝑎𝑙𝑙𝑖𝑢𝑚 𝐴𝑟𝑒𝑠𝑒𝑛𝑖𝑑𝑒 (𝐺𝑎𝐴𝑠)
250 × 𝑃𝑆𝐴, 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 

 

𝑐𝑒𝑙𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = {

0.148, 𝑖𝑓 𝑆𝑖
0.185, 𝑖𝑓 𝐺𝑎𝐴𝑠
0.22, 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 

 

𝜌𝑆𝐴 = {

2329, 𝑖𝑓 𝑆𝑖
5317.6, 𝑖𝑓 𝐺𝑎𝐴𝑠
5520.8, 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 

 

 

 

Thermal (SL1, SS1)  

 

𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = {
𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ + 𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟 + 𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑒𝑟 , 𝑖𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑓𝑖𝑛𝑖𝑠ℎ

𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑝𝑖𝑝𝑒 + 𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟 + 𝐶𝑜𝑠𝑡_ℎ𝑒𝑎𝑡𝑒𝑟, 𝑖𝑓 ℎ𝑒𝑎𝑡𝑝𝑖𝑝𝑒
 

 

𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑝𝑖𝑝𝑒 = 5 × 10
6 

 

𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑀𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ 
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Thermal (SL2, SS1) – Thermal finish 

 

∝𝑒𝑝𝑠𝑆𝐴= {

0.12, 𝑖𝑓 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑓𝑖𝑛𝑖𝑠ℎ 𝑖𝑠 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.56, 𝑖𝑓 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑓𝑖𝑛𝑖𝑠ℎ 𝑖𝑠 𝐾𝑎𝑝𝑡𝑜𝑛
0.275, 𝑖𝑓 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑓𝑖𝑛𝑖𝑠ℎ 𝑖𝑠 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.37, 𝑖𝑓 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑓𝑖𝑛𝑖𝑠ℎ 𝑖𝑠 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

𝜌𝑆𝐴 = {

0.27, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.19, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.095, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.237, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

 

𝐴𝑝𝑆𝐴 =
𝜎 × (𝑇𝑆𝐴 + 273)

4 × 𝐴𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

𝑆 ×∝𝑒𝑝𝑠𝑆𝐴
 

 

𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑆𝐴 = 𝜌𝑆𝐴 × 𝐴𝑝𝑆𝐴 × 𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑓𝑖𝑛𝑖𝑠ℎ 

 

𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ𝑆𝐴 =

{
 
 

 
 10 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ𝑆𝐴, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛

50 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ𝑆𝐴, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛

30 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ𝑆𝐴, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛

40 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ𝑆𝐴, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

 

 

∝𝑒𝑝𝑠𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡𝑒𝑛𝑛𝑎= {

0.12, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.56, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.275, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.37, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

𝜌𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡𝑒𝑛𝑛𝑎 = {

0.27, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.19, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.095, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.237, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

 

𝐴𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑡𝑟𝑎𝑛𝑠 = 2𝜋 × (
𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2
)
2

+ 2𝜋 × (
𝐷𝑠𝑎𝑡,𝑡𝑟𝑎𝑛𝑠

2
) × 𝑡𝑠𝑎𝑡𝑡𝑟𝑎𝑛𝑠 × 𝐷𝑠𝑎𝑡𝑡𝑟𝑎𝑛𝑠 

𝐴𝑝𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑡𝑟𝑎𝑛𝑠 =
𝜎 × (𝑇𝑎𝑛𝑡𝑒𝑛𝑛𝑎 + 273)

4 × 𝐴𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑡𝑟𝑎𝑛𝑠
𝑆 ×∝𝑒𝑝𝑠𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡𝑒𝑛𝑛𝑎

 

𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡 = 𝜌𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡𝑒𝑛𝑛𝑎 × 𝐴𝑝𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑡𝑟𝑎𝑛𝑠 × 𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑓𝑖𝑛𝑖𝑠ℎ 
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145 

 

𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡 =

{
 
 

 
 10 × 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛

50 × 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛

30 × 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛

40 × 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑡𝑟𝑎𝑛𝑠,𝑎𝑛𝑡, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

 

 

∝𝑒𝑝𝑠𝑟𝑒𝑐,𝑎𝑛𝑡𝑒𝑛𝑛𝑎= {

0.12, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.56, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.275, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.37, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

𝜌𝑟𝑒𝑐,𝑎𝑛𝑡𝑒𝑛𝑛𝑎 = {

0.27, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.19, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.095, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.237, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

 

𝐴𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑟𝑒𝑐 = 2𝜋 × (
𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
2

)
2

+ 2𝜋 × (
𝐷𝑠𝑎𝑡,𝑟𝑒𝑐
2

) × 𝑡𝑠𝑎𝑡𝑡𝑟𝑎𝑛𝑠 × 𝐷𝑠𝑎𝑡𝑟𝑒𝑐 

 

𝐴𝑝𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑟𝑒𝑐 =
𝜎 × (𝑇𝑎𝑛𝑡𝑒𝑛𝑛𝑎 + 273)

4 × 𝐴𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑟𝑒𝑐
𝑆 ×∝𝑒𝑝𝑠𝑟𝑒𝑐,𝑎𝑛𝑡𝑒𝑛𝑛𝑎

 

 

𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑟𝑒𝑐,𝑎𝑛𝑡 = 𝜌𝑟𝑒𝑐,𝑎𝑛𝑡𝑒𝑛𝑛𝑎 × 𝐴𝑝𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑟𝑒𝑐 × 𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑓𝑖𝑛𝑖𝑠ℎ 

 

𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑟𝑒𝑐,𝑎𝑛𝑡 =

{
 
 

 
 10 × 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑟𝑒𝑐,𝑎𝑛𝑡, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛

50 × 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑟𝑒𝑐,𝑎𝑛𝑡, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛

30 × 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑟𝑒𝑐,𝑎𝑛𝑡, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛

40 × 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑟𝑒𝑐,𝑎𝑛𝑡, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

 

If bus configuration is cylindrical 

 

∝𝑒𝑝𝑠𝑏𝑢𝑠= {

0.12, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.56, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.275, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.37, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

𝜌𝑏𝑢𝑠 = {

0.27, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.19, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.095, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.237, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ
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146 

 

𝐴𝑏𝑢𝑠 = 2𝜋 × 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
2 + 2𝜋 × 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 × 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 

 

𝐴𝑝𝑏𝑢𝑠 =
𝜎 × (𝑇𝑏𝑢𝑠 + 273)

4 × 𝐴𝑏𝑢𝑠
𝑆 ×∝𝑒𝑝𝑠𝑏𝑢𝑠

 

 

𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠 = 𝜌𝑏𝑢𝑠 × 𝐴𝑝𝑏𝑢𝑠 × 𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑓𝑖𝑛𝑖𝑠ℎ 

             

𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠 =

{
 
 

 
 10 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛

50 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛

30 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛

40 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

If bus configuration is rectangular 

 

∝𝑒𝑝𝑠𝑏𝑢𝑠= {

0.12, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.56, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.275, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.37, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

𝜌𝑏𝑢𝑠 = {

0.27, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛
0.19, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛
0.095, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛
0.237, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

 

𝐴𝑏𝑢𝑠 = 2 × 𝑤𝑠2 + 4 × ℎ𝑠 × 𝑤𝑠 
 

𝐴𝑝𝑏𝑢𝑠 =
𝜎 × (𝑇𝑏𝑢𝑠 + 273)

4 × 𝐴𝑏𝑢𝑠
𝑆 ×∝𝑒𝑝𝑠𝑏𝑢𝑠

 

 

𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠 = 𝜌𝑏𝑢𝑠 × 𝐴𝑝𝑏𝑢𝑠 × 𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑓𝑖𝑛𝑖𝑠ℎ 

             

𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠 =

{
 
 

 
 10 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠, 𝑖𝑓 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛

50 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠, 𝑖𝑓 𝐾𝑎𝑝𝑡𝑜𝑛

30 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠, 𝑖𝑓 𝐴𝑙 𝑐𝑜𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑘𝑎𝑝𝑡𝑜𝑛

40 ×𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠, 𝑖𝑓 𝐵𝑒𝑡𝑎 𝑐𝑙𝑜𝑡ℎ

 

 

𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ = 𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑆𝐴 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑡𝑟𝑎𝑛𝑠 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑟𝑒𝑐

+𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠 

 

𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ
= 𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑆𝐴 + 𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑡𝑟𝑎𝑛𝑠𝑎𝑛𝑡𝑒𝑛𝑛𝑎
+ 𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑟𝑒𝑐𝑎𝑛𝑡𝑒𝑛𝑛𝑎 + 𝐶𝑜𝑠𝑡𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑓𝑖𝑛𝑖𝑠ℎ,𝑏𝑢𝑠 
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Thermal (SL2, SS2) – Heater and Radiator 

 

𝑒𝑝𝑠𝑏𝑎𝑡𝑡 = {
0.78, 𝑖𝑓 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑠 5 𝑚𝑖𝑙 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑇𝑒𝑓𝑙𝑜𝑛
0.92, 𝑖𝑓 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑠 𝑊ℎ𝑖𝑡𝑒 𝑝𝑎𝑖𝑛𝑡 (𝑍93)

 

 

 

𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =
𝑄𝑖𝑛𝑡

𝜎 × 𝑒𝑝𝑠𝑏𝑎𝑡𝑡 × (𝑇𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 273)
4 

 

𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝑒𝑝𝑠𝑏𝑎𝑡𝑡 × 𝜎 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 × (𝑇𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑚𝑖𝑛 + 273)
4 

 

𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑒𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 20 × 𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

 

𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = {
0.27 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 × 10, 𝑖𝑓 5 𝑚𝑖𝑙 𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛

200 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 , 𝑖𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑎𝑖𝑛𝑡 (𝑍93)
 

 

𝑒𝑝𝑠𝑅𝑊 = {
0.78, 𝑖𝑓 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑠 5 𝑚𝑖𝑙 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑇𝑒𝑓𝑙𝑜𝑛
0.92, 𝑖𝑓 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑠 𝑊ℎ𝑖𝑡𝑒 𝑝𝑎𝑖𝑛𝑡 (𝑍93)

 

 

𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑅𝑊 =
𝑄𝑖𝑛𝑡

𝜎 × 𝑒𝑝𝑠𝑅𝑊 × (𝑇𝑅𝑊 + 273)4
 

 

𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑅𝑊 = 𝑒𝑝𝑠𝑅𝑊 × 𝜎 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑅𝑊 × (𝑇𝑅𝑊𝑚𝑖𝑛 + 273)
4 

 

𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑒𝑟𝑅𝑊 = 20 × 𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑅𝑊 
 

𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑅𝑊 = {
0.27 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑅𝑊 × 10, 𝑖𝑓 5 𝑚𝑖𝑙 𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛

200 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑅𝑊, 𝑖𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑎𝑖𝑛𝑡 (𝑍93)
 

 

𝑒𝑝𝑠𝑝𝑟𝑜𝑝,𝑡𝑎𝑛𝑘 = {
0.78, 𝑖𝑓 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑠 5 𝑚𝑖𝑙 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑇𝑒𝑓𝑙𝑜𝑛
0.92, 𝑖𝑓 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑠 𝑊ℎ𝑖𝑡𝑒 𝑝𝑎𝑖𝑛𝑡 (𝑍93)

 

 

𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑡𝑎𝑛𝑘 =
𝑄𝑖𝑛𝑡

𝜎 × 𝑒𝑝𝑠𝑝𝑟𝑜𝑝,𝑡𝑎𝑛𝑘 × (𝑇𝑡𝑎𝑛𝑘 + 273)4
 

 

𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑡𝑎𝑛𝑘 = 𝑒𝑝𝑠𝑝𝑟𝑜𝑝,𝑡𝑎𝑛𝑘 × 𝜎 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑡𝑎𝑛𝑘 × (𝑇𝑡𝑎𝑛𝑘𝑚𝑖𝑛 + 273)
4 

 

𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑒𝑟𝑡𝑎𝑛𝑘 = 20 × 𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑡𝑎𝑛𝑘 
 

𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑡𝑎𝑛𝑘 = {
0.27 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑡𝑎𝑛𝑘 × 10, 𝑖𝑓 5 𝑚𝑖𝑙 𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑓𝑙𝑜𝑛

200 × 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑡𝑎𝑛𝑘 , 𝑖𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑎𝑖𝑛𝑡 (𝑍93)
 

 

𝑀𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟 = 3.3 × (𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑅𝑊 + 𝐴𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑡𝑎𝑛𝑘) 
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𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑅𝑊 + 𝑃ℎ𝑒𝑎𝑡𝑒𝑟𝑡𝑎𝑛𝑘 

 

𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟 = 𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑅𝑊 + 𝐶𝑜𝑠𝑡𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟𝑡𝑎𝑛𝑘 

 

𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑒𝑟 = 𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑒𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑒𝑟𝑅𝑊 + 𝐶𝑜𝑠𝑡ℎ𝑒𝑎𝑡𝑒𝑟𝑡𝑎𝑛𝑘 

 

 

ADCS (SL1, SS1) 

 

𝐼𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 = 𝐼𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 + 𝐼𝑃𝑟𝑜𝑝𝑇𝑎𝑛𝑘 

 

To calculate MI of Solar Array 

𝑏𝑆𝐴 = √
𝐴𝑟𝑟𝑎𝑦 𝑆𝑖𝑧𝑒

6
 

𝑙𝑆𝐴 = 3 ∗ 𝑏𝑆𝐴 
 

𝐼𝑥𝑆𝐴 = (
1

12
) ∗ (

𝑀𝑆𝐴
2
) ∗ (𝑡𝑆𝐴

2 + (
𝑙𝑆𝐴
2
)
2

) 

 

𝐼𝑦𝑆𝐴 = (
1

12
) ∗ (

𝑀𝑆𝐴
2
) ∗ (𝑏𝑆𝐴

2 + 𝑡𝑆𝐴
2 ) 

 

𝐼𝑧𝑆𝐴 = (
1

12
) ∗ (

𝑀𝑆𝐴
2
) ∗ (𝑏𝑆𝐴

2 + (
𝑙𝑆𝐴
2
)
2

) + (𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 +
𝑙𝑆𝐴
4
)
2

∗ (
𝑀𝑆𝐴
2
) 

 

 

To calculate MI of Payload 

 

 Bus configuration: Cylindrical 

𝐼𝑥𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 = (
1

12
) ∗ 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑡

∗ (3 ∗ 𝐷𝑆𝑎𝑡𝑇𝑟𝑎𝑛𝑠
2 + 𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑

2 ) + 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑡

∗ (
𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑

2
+
𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2
)
2

= 𝐼𝑦𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 

𝐼𝑧𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 =
𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑡

2
∗ (
𝐷𝑆𝑎𝑡𝑇𝑟𝑎𝑛𝑠

2
)
2

 

𝐼𝑥𝑅𝑒𝑐𝐴𝑛𝑡 = (
𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑟

2
) ∗ (

𝐷𝑆𝑎𝑡𝑅𝑒𝑐
2

)
2

+𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑟
∗ (
𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑

2
+
𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2
)
2

= 𝐼𝑦𝑅𝑒𝑐𝐴𝑛𝑡 

𝐼𝑧𝑅𝑒𝑐𝐴𝑛𝑡 = (
1

12
) ∗ 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑟

∗ (3 ∗ (
𝐷𝑆𝑎𝑡𝑅𝑒𝑐
2

)
2

+ 𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑
2 ) 

𝐼𝑥 = 𝐼𝑥𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 2 ∗ 𝐼𝑥𝑆𝐴 + 𝐼𝑥𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 + 𝐼𝑥𝑅𝑒𝑐𝐴𝑛𝑡 + 𝐼𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 
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𝐼𝑦 = 𝐼𝑦𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
+ 2 ∗ 𝐼𝑦𝑆𝐴

+ 𝐼𝑦𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡
+ 𝐼𝑦𝑅𝑒𝑐𝐴𝑛𝑡

+ 𝐼𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 

𝐼𝑧 = 𝐼𝑧𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 2 ∗ 𝐼𝑧𝑆𝐴 + 𝐼𝑧𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 + 𝐼𝑧𝑅𝑒𝑐𝐴𝑛𝑡 + 𝐼𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 

𝐴𝑠 = 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ 2 ∗ 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 2𝑙𝑆𝐴𝑏𝑆𝐴 + 𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 𝐷𝑆𝑎𝑡𝑇𝑟𝑎𝑛𝑠 + 𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 𝐷𝑆𝑎𝑡𝑅𝑒𝑐 

𝐹 = (
𝐹𝑠
𝑐
) ∗ 𝐴𝑠(1 + 𝑞) cos(𝛼) 

𝑇𝑠𝑝 = 0.3𝐹  

 

 Bus configuration: Rectangular 

𝐼𝑥𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 = (
1

12
) ∗ 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑡

∗ (3 ∗ 𝐷𝑆𝑎𝑡𝑇𝑟𝑎𝑛𝑠
2 + 𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑

2 ) + 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑡
∗ (
𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑

2
+
ℎ𝑠

2
)
2

= 𝐼𝑦𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡
 

𝐼𝑧𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 =
𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑡

2
∗ (
𝐷𝑆𝑎𝑡𝑇𝑟𝑎𝑛𝑠

2
)
2

 

𝐼𝑥𝑅𝑒𝑐𝐴𝑛𝑡 = (
𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑟

2
) ∗ (

𝐷𝑆𝑎𝑡𝑅𝑒𝑐
2

)
2

+𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑟
∗ (
𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑

2
+
ℎ𝑠

2
)
2

= 𝐼𝑦𝑅𝑒𝑐𝐴𝑛𝑡 

𝐼𝑧𝑅𝑒𝑐𝐴𝑛𝑡 = (
1

12
) ∗ 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑟

∗ (3 ∗ (
𝐷𝑆𝑎𝑡𝑅𝑒𝑐
2

)
2

+ 𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑
2 ) 

𝐼𝑥 = 𝐼𝑥𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 2 ∗ 𝐼𝑥𝑆𝐴 + 𝐼𝑥𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 + 𝐼𝑥𝑅𝑒𝑐𝐴𝑛𝑡 + 𝐼𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 

𝐼𝑦 = 𝐼𝑦𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 2 ∗ 𝐼𝑦𝑆𝐴 + 𝐼𝑦𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 + 𝐼𝑦𝑅𝑒𝑐𝐴𝑛𝑡 + 𝐼𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 

𝐼𝑧 = 𝐼𝑧𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 + 2 ∗ 𝐼𝑧𝑆𝐴 + 𝐼𝑧𝑇𝑟𝑎𝑛𝑠𝐴𝑛𝑡 + 𝐼𝑧𝑅𝑒𝑐𝐴𝑛𝑡 + 𝐼𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 

𝐴𝑠 = ℎ𝑠 ∗ 𝑤𝑠 + 2𝑙𝑆𝐴𝑏𝑆𝐴 + 𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 𝐷𝑆𝑎𝑡𝑇𝑟𝑎𝑛𝑠 + 𝑡𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 𝐷𝑆𝑎𝑡𝑅𝑒𝑐 

𝐹 = (
𝐹𝑠
𝑐
) ∗ 𝐴𝑠(1 + 𝑞) cos(𝛼) 

𝑇𝑠𝑝 = 0.3𝐹  

𝑇𝑔 =
3𝜇 ∗ 𝑎𝑏𝑠(𝐼𝑧 − 𝐼𝑦) ∗ sin(2𝜃)

2𝑅3
 

 

We then have, 𝑇𝑑 = 𝑇𝑔 + 𝑇𝑠𝑝 

 

 Controller: Reaction Wheel 

𝑇𝑅𝑊 = 1.3𝑇𝑑 

ℎ𝑑 = 𝑇𝑅𝑊 ∗ (24 ∗ 60 ∗
60

4
) ∗ 0.707 
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𝜃𝑑 =
0.1 ∗ 𝜋

180
 

ℎ𝑝 = (𝑇𝑅𝑊 ∗ 24 ∗ 60 ∗ 60)/(4 ∗ 𝜃𝑑) 

 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑅𝑊 = ℎ𝑑 + ℎ𝑝 

𝑀𝑅𝑊 =
𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑅𝑊 + 44

22.2
 

𝑀𝑠𝑒𝑛𝑠𝑜𝑟𝑠 = 3 

𝑀𝐴𝐷𝐶𝑆 = 𝑀𝑅𝑊 +𝑀𝑠𝑒𝑛𝑠𝑜𝑟𝑠 

𝑃𝑅𝑊 =
𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑅𝑊 + 39.56

3.996
 

𝑉𝑅𝑊 =
𝑀𝑅𝑊

2800
 

𝑃𝑠𝑒𝑛𝑠𝑜𝑟𝑠 = 10 

𝑃𝐴𝐷𝐶𝑆 = 𝑃𝑅𝑊 + 𝑃𝑠𝑒𝑛𝑠𝑜𝑟𝑠 

𝐶𝑜𝑠𝑡𝐴𝐷𝐶𝑆 = 464 ∗ 𝑀𝐴𝐷𝐶𝑆
0.867 

 

 Controller: Hydrazine Thrusters 

𝑇𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 = 1.3𝑇𝑑 

ℎ𝑑 = 𝑇𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 ∗ (24 ∗ 60 ∗
60

4
) ∗ 0.707 

𝜃𝑑 =
0.1 ∗ 𝜋

180
 

ℎ𝑝 = (𝑇𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 ∗ 24 ∗ 60 ∗ 60)/(4 ∗ 𝜃𝑑)  

 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 = ℎ𝑑 + ℎ𝑝 

 

𝐹𝐹 =

{
 
 

 
 
𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
         𝑖𝑓 𝑏𝑢𝑠 = 𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙

𝐴𝑛𝑔𝑢𝑎𝑙𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

𝑤𝑠
2

          𝑖𝑓 𝑏𝑢𝑠 = 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟
 

𝐼𝑠𝑝 = 200 

𝑔𝑒 = 9.81 
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𝜌𝑝𝑟𝑜𝑝 = 1021 

𝑀𝑠𝑒𝑛𝑠𝑜𝑟𝑠 = 3 

𝑃𝑠𝑒𝑛𝑠𝑜𝑟𝑠 = 10 

𝜌𝑝𝑡 = 2800 

𝑀𝑝𝑟𝑜𝑝 =
10000𝐹𝐹

𝐼𝑠𝑝 ∗ 𝑔𝑒
 

𝑉𝑝 =
1.2𝑀𝑝𝑟𝑜𝑝

𝜌𝑝𝑟𝑜𝑝
 

𝑑𝑝 = (
6𝑉𝑝

𝜋
)

1
3
 

𝑉𝑝𝑡 =
𝜋

6
∗ (𝑑𝑝 + 0.01)3−𝑑𝑝

3
 

𝑀𝑝𝑡 = 𝑉𝑝𝑡 ∗ 𝜌𝑝𝑡 

𝑀𝐴𝐷𝐶𝑆 = (𝑀𝑝𝑡 +𝑀𝑝𝑟𝑜𝑝) + 𝑀𝑠𝑒𝑛𝑠𝑜𝑟𝑠 

𝑃𝑅𝑊 = 0 

𝑀𝑅𝑊 = 𝑀𝑝𝑡 +𝑀𝑝𝑟𝑜𝑝 

𝑃𝐴𝐷𝐶𝑆 = 𝑃𝑠𝑒𝑛𝑠𝑜𝑟𝑠 

𝑉𝑅𝑊 = 𝑉𝑝𝑡 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑅𝑊 = 0 

𝐶𝑜𝑠𝑡𝐴𝐷𝐶𝑆 =
2.48 ∗ 7 ∗ 𝑀𝑝𝑟𝑜𝑝

0.453
 

 

 

Launch Vehicle (SL1, SS1) 

 

𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠
= 𝑀𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 +𝑀𝑆𝐴 + 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑚𝑎𝑠𝑠 +𝑀𝑏𝑢𝑠 +𝑀𝐴𝐷𝐶𝑆 +𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 

 

𝑉𝑖 = 3.08 ∗ 103 
 

𝜃 = {

28         𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑠𝑖𝑡𝑒 = 𝐶𝑎𝑝𝑒 𝐶𝑎𝑛𝑎𝑣𝑒𝑟𝑎𝑙
34         𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑠𝑖𝑡𝑒 = 𝑉𝑎𝑛𝑑𝑒𝑛𝑏𝑒𝑟𝑔 𝐴𝐵
37                𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑠𝑖𝑡𝑒 = 𝑊𝑎𝑙𝑙𝑜𝑝𝑠, 𝑉𝐴

  

𝛿𝑉𝑝𝑙𝑎𝑛𝑒𝑐ℎ𝑎𝑛𝑔𝑒 = 2𝑉𝑖 sin (
𝜃

2
) 
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𝛿𝑉𝐿𝐸𝑂 = 10000 

 

𝛿𝑉𝐺𝑇𝑂 = 2.46 ∗ 103 

𝛿𝑉𝑝𝑙𝑎𝑛𝑒𝑐ℎ𝑎𝑛𝑔𝑒 = 2𝑉𝑖 sin (
𝜃

2
) 

 

𝑀𝐵𝑙𝑣
= 𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 +𝑀𝑆𝐴 +𝑀𝐵𝑎𝑡𝑡𝑒𝑟𝑦 +𝑀𝐴𝐷𝐶𝑆 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 +𝑀𝑏𝑢𝑠 +𝑀𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 

 

 Launch Vehicle: Atlas 5 

 

𝐼𝑠𝑝1 = 311 
 

𝐼𝑠𝑝2 = 450 
 

𝑅1 = 𝑒
(
𝛿𝑉𝐿𝐸𝑂
𝐼𝑠𝑝1∗𝑔𝑒

)
 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡1
= (𝑅1 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

 

𝑅2 = 𝑒

𝛿𝑉𝐺𝑇𝑂+𝛿𝑉𝑝𝑙𝑎𝑛𝑒𝑐ℎ𝑎𝑛𝑔𝑒
𝐼𝑠𝑝2∗𝑔𝑒  

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡2
= (𝑅2 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣 = 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡1
+𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡2

 

 

𝐶𝑜𝑠𝑡𝑙𝑣 = {

15000 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝐶𝐶

12000 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝑉𝐴𝐵

11000 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝑉𝐴

 

 

 Launch vehicle: Delta 2 

 

𝐼𝑠𝑝1 = 302 
 

𝐼𝑠𝑝2 = 319 
 

𝐼𝑠𝑝3 = 286 
 

𝑅1 = 𝑒
(
𝛿𝑉𝐿𝐸𝑂
𝐼𝑠𝑝1∗𝑔𝑒

)
 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡1
= (𝑅1 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

 

𝑅2 = 𝑒

𝛿𝑉𝐺𝑇𝑂+𝛿𝑉𝑝𝑙𝑎𝑛𝑒𝑐ℎ𝑎𝑛𝑔𝑒
𝐼𝑠𝑝2∗𝑔𝑒  
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𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡2
= (𝑅2 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

 

𝑅3 = 𝑒

𝛿𝑉𝑝𝑙𝑎𝑛𝑒𝑐ℎ𝑎𝑛𝑔𝑒
𝐼𝑠𝑝3∗𝑔𝑒  

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡3
= (𝑅3 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
= 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡1

+𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡2
+𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡3

 

𝐶𝑜𝑠𝑡𝑙𝑣 = {

13000 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝐶𝐶

11000 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝑉𝐴𝐵

10500 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝑉𝐴

 

 

 Launch vehicle: Falcon 9 

 

𝐼𝑠𝑝1 = 311 
 

𝐼𝑠𝑝2 = 342 
 

𝑅1 = 𝑒
(
𝛿𝑉𝐿𝐸𝑂
𝐼𝑠𝑝1∗𝑔𝑒

)
 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡1
= (𝑅1 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

 

𝑅2 = 𝑒

𝛿𝑉𝐺𝑇𝑂+𝛿𝑉𝑝𝑙𝑎𝑛𝑒𝑐ℎ𝑎𝑛𝑔𝑒
𝐼𝑠𝑝2∗𝑔𝑒  

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡2
= (𝑅2 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
= 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡1

+𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡2
 

 

𝐶𝑜𝑠𝑡𝑙𝑣 = {

12800 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝐶𝐶

10500 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝑉𝐴𝐵

10000 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝑉𝐴

 

 

 

 Launch vehicle: Titan 4 

 

𝐼𝑠𝑝1 = 302 
 

𝐼𝑠𝑝2 = 316 
 

𝐼𝑠𝑝3 = 444 
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𝑅1 = 𝑒
(
𝛿𝑉𝐿𝐸𝑂
𝐼𝑠𝑝1∗𝑔𝑒

)
 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡1
= (𝑅1 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

 

𝑅2 = 𝑒

𝛿𝑉𝐺𝑇𝑂+𝛿𝑉𝑝𝑙𝑎𝑛𝑒𝑐ℎ𝑎𝑛𝑔𝑒
𝐼𝑠𝑝2∗𝑔𝑒  

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡2
= (𝑅2 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

𝑅3 = 𝑒

𝛿𝑉𝑝𝑙𝑎𝑛𝑒𝑐ℎ𝑎𝑛𝑔𝑒
𝐼𝑠𝑝3∗𝑔𝑒  

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡3
= (𝑅3 ∗ 𝑀𝐵𝑙𝑣

−𝑀𝐵𝑙𝑣
) ∗ 1.2 

 

𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
= 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡1

+𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡2
+𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡3

 

 

𝐶𝑜𝑠𝑡𝑙𝑣 = {

14000 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝐶𝐶

11500 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝑉𝐴𝐵

10750 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝑚𝑎𝑠𝑠 + 100 ∗ 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑙𝑣
        𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ𝑠𝑖𝑡𝑒 = 𝑉𝐴

 

 

 

 

Structures (SL1, SS1)  

 

 Bus configuration: Cylindrical 

 

𝑉𝑏𝑢𝑠1 = 1.2(𝑉𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 + 𝑉𝑅𝑊 + 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝑉𝑡𝑟𝑎𝑛𝑠) 

𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = (
9 ∗ 𝑉𝑏𝑢𝑠1

𝜋
)

1
3

 

𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 =
𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

3
 

 

𝑓𝑛𝑎𝑡𝑎 = {

15           𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐴𝑡𝑙𝑎𝑠 5
35          𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐷𝑒𝑙𝑡𝑎 2
25       𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐹𝑎𝑙𝑐𝑜𝑛 9
24         𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝑇𝑖𝑡𝑎𝑛 4
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𝑓𝑛𝑎𝑡𝑙 = {

10           𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐴𝑡𝑙𝑎𝑠 5
15          𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐷𝑒𝑙𝑡𝑎 2
15       𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐹𝑎𝑙𝑐𝑜𝑛 9
10         𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝑇𝑖𝑡𝑎𝑛 4

 

 

𝑀𝑆𝐶 = 𝑀𝐴𝐷𝐶𝑆 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 +𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 +𝑀𝑏𝑎𝑡𝑡𝑒𝑟𝑦 +𝑀𝑆𝐴 +𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 

𝑡1 =
(
𝑓𝑛𝑎𝑡𝑎
0.25

)
2

∗ 𝑀𝑆𝐶 ∗ 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2 ∗ 𝜋 ∗ 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ 𝐸
 

 

𝑡2 =
(
𝑓𝑛𝑎𝑡𝑙
0.56

)
2

∗ 𝑀𝑆𝐶 ∗ 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
3

𝜋 ∗ 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
3 ∗ 𝐸

 

 

𝑃𝑎𝑥𝑖𝑎𝑙 = 𝑀𝑆𝐶 ∗ 𝐿𝐹𝑎 ∗ 9.81 

 

𝑃𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 𝑀𝑆𝐶 ∗ 𝐿𝐹𝑙 ∗ 9.81 

 

𝐵𝑀 = 𝑃𝑙𝑎𝑡𝑒𝑟𝑎𝑙 ∗
𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2
 

 

𝑃𝑒𝑞 = 𝑃𝑎𝑥𝑖𝑎𝑙 +
2𝐵𝑀

𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
 

 

𝐹𝑢𝑙𝑡𝑖 = 𝑃𝑒𝑞 ∗ 𝐹𝑂𝑆𝑢𝑙𝑡𝑖 

 

𝑡𝑟𝑒𝑞1 =
𝐹𝑢𝑙𝑡𝑖

𝐹𝑡𝑢 ∗ 2 ∗ 𝜋 ∗ 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
 

 

𝑡𝑟𝑒𝑞2 =
𝑃𝑒𝑞 ∗ 𝐹𝑂𝑆𝑦𝑖𝑒𝑙𝑑

2 ∗ 𝜋 ∗ 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ 𝐹𝑡𝑦
 

 

𝑡𝑡 = [𝑡𝑟𝑒𝑞1 𝑡𝑟𝑒𝑞2𝑡1𝑡2] 
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𝑡 = max(𝑡𝑡) 

 

𝜙 = (
1

16
) ∗ √(

𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
𝑡

) 

 

𝛾 = 1 − 0.901(1 − 𝑒−𝜙) 

 

𝜎𝑐𝑟 =
0.6𝛾𝐸𝑡

𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
 

 

𝐴 = 2 ∗ 𝜋 ∗ 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ 𝑡 

 

𝑃𝑐𝑟 = 𝐴 ∗ 𝜎𝑐𝑟 

 

𝑀𝑆 =
𝑃𝑐𝑟
𝐹𝑢𝑙𝑡𝑖

− 1 

 

𝑀𝑏𝑢𝑠 = 𝜌𝑏𝑢𝑠 ∗ 𝜋 ∗ 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ (𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
2 − (𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 − 𝑡𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠)

2) 

 

𝑉𝑏𝑢𝑠 = 𝜋 ∗ 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ (𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠
2 − (𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 − 𝑡𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠)

2) 

𝐼𝑥𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = (
1

12
) ∗ 𝑀𝑏𝑢𝑠 ∗ (3 ∗ 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2 + (𝑟𝑠𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 − 𝑡𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠)
2 + 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2 ) 

𝐼𝑦𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = (
1

12
) ∗ 𝑀𝑏𝑢𝑠 ∗ (3 ∗ 𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2 + (𝑟𝑠𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 − 𝑡𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠)
2 + 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2 ) 

𝐼𝑧𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = (
1

12
) ∗ 𝑀𝑏𝑢𝑠 ∗ (𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

2 + (𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 − 𝑡𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠)
2) 

 

 Bus configuration: Rectangular 

 

𝑉𝑏𝑢𝑠1 = 1.2(𝑉𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑡𝑎𝑛𝑘 + 𝑉𝑅𝑊 + 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝑉𝑡𝑟𝑎𝑛𝑠) 

ℎ𝑠 = (25 ∗ 𝑉𝑏𝑢𝑠1)
1
3  
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𝑤𝑠 =
ℎ𝑠

5
= 𝑑𝑠 

𝑓𝑛𝑎𝑡𝑎 = {

15           𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐴𝑡𝑙𝑎𝑠 5
35          𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐷𝑒𝑙𝑡𝑎 2
25       𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐹𝑎𝑙𝑐𝑜𝑛 9
24         𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝑇𝑖𝑡𝑎𝑛 4

 

 

𝑓𝑛𝑎𝑡𝑙 = {

10           𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐴𝑡𝑙𝑎𝑠 5
15          𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐷𝑒𝑙𝑡𝑎 2
15       𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝐹𝑎𝑙𝑐𝑜𝑛 9
10         𝑖𝑓 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝑇𝑖𝑡𝑎𝑛 4

 

 

𝑀𝑆𝐶 = 𝑀𝐴𝐶𝐷𝑆 +𝑀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 +𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 +𝑀𝑏𝑎𝑡𝑡𝑒𝑟𝑦 +𝑀𝑆𝐴 +𝑀𝑝𝑎𝑦𝑙𝑜𝑎𝑑 

 

𝑡1 =

((
𝑓𝑛𝑎𝑡𝑎
0.25

)
2

∗ 𝑀𝑆𝐶 ∗ ℎ𝑠)

4 ∗ 𝑤𝑠 ∗ 𝐸
 

 

𝑡2 =

((
𝑓𝑛𝑎𝑡𝑙
0.56

)
2

∗ 𝑀𝑆𝐶 ∗ ℎ𝑠
3)

𝜋 ∗ 𝑤𝑠3 ∗ 𝐸
 

 

𝑃𝑎𝑥𝑖𝑎𝑙 = 𝑀𝑆𝐶 ∗ 𝐿𝐹𝑎 ∗ 9.81 

 

𝑃𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 𝑀𝑆𝐶 ∗ 𝐿𝐹𝑙 ∗ 9.81 

𝐵𝑀 = 𝑃𝑙𝑎𝑡𝑒𝑟𝑎𝑙 ∗
ℎ𝑠

2
 

𝑃𝑒𝑞 = 𝑃𝑎𝑥𝑖𝑎𝑙 +
2𝐵𝑀

𝑤𝑠
 

𝐹𝑢𝑙𝑡𝑖 = 𝑃𝑒𝑞 ∗ 𝐹𝑂𝑆𝑢𝑙𝑡𝑖 

𝑡𝑟𝑒𝑞1 =
𝐹𝑢𝑙𝑡𝑖

𝐹𝑡𝑢 ∗ 4 ∗ 𝑤𝑠
 

𝑡𝑟𝑒𝑞2 =
𝑃𝑒𝑞 ∗ 𝐹𝑂𝑆𝑦𝑖𝑒𝑙𝑑

4 ∗ 𝑤𝑠 ∗ 𝐹𝑡𝑦
 

𝑡𝑡 = [𝑡𝑟𝑒𝑞1 𝑡𝑟𝑒𝑞2𝑡1𝑡2] 
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𝑡 = max(𝑡𝑡) 

𝑃𝑐𝑟 =
4 ∗ 𝜋3 ∗ 𝐸 ∗ 𝑤𝑠3 ∗ 𝑡

ℎ𝑠2
 

𝑀𝑆 =
𝑃𝑐𝑟
𝐹𝑢𝑙𝑡𝑖

− 1 

𝑀𝑜 = 𝜌𝑏𝑢𝑠 ∗ 𝑤𝑠 ∗ 𝑑𝑠 ∗ ℎ𝑠 

𝑤𝑠𝑠 = 𝑤𝑠 − 2𝑡 

𝑑𝑠𝑠 = 𝑑𝑠 − 2𝑡 

𝑀𝑖 = 𝜌𝑏𝑢𝑠 ∗ 𝑤𝑠𝑠 ∗ 𝑑𝑠𝑠 ∗ ℎ𝑠 

𝑀𝑏𝑢𝑠 = 𝜌𝑏𝑢𝑠 ∗ ℎ𝑠 ∗ (𝑤𝑠 ∗ 𝑑𝑠 − (𝑤𝑠 − 2𝑡) ∗ (𝑑𝑠𝑠 − 2𝑡)) 

𝑉𝑏𝑢𝑠 =
𝑀𝑏𝑢𝑠

𝜌𝑏𝑢𝑠
 

𝐼𝑥𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = (
1

12
) ∗ (𝑀𝑜(ℎ𝑠

2 + 𝑤𝑠2) − 𝑀𝑖(ℎ𝑠
2 + 𝑤𝑠𝑠2)) 

𝐼𝑦𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = (
1

12
) ∗ (𝑀𝑜(ℎ𝑠

2 + 𝑑𝑠2) − 𝑀𝑖(ℎ𝑠
2 + 𝑑𝑠𝑠2)) 

𝐼𝑧𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = (
1

12
) ∗ (𝑀𝑜(𝑑𝑠

2 + 𝑤𝑠2) −𝑀𝑖(𝑑𝑠𝑠
2 + 𝑤𝑠𝑠2)) 

𝐶𝑜𝑠𝑡𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 = 𝐶𝑜𝑠𝑡𝑏𝑢𝑠𝑝𝑒𝑟𝑘𝑔 ∗ 𝑀𝑏𝑢𝑠 

 

Structures (SL2, SS1) – Bus material 

 

𝜌𝑏𝑢𝑠 = {

2850        𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚
7860                   𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑆𝑡𝑒𝑒𝑙
1770       𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚
4430       𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚

 

 

𝐸 =  

{
 
 

 
 72 ∗ 10

9           𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚

196 ∗ 109                    𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑆𝑡𝑒𝑒𝑙

45 ∗ 109        𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚

110 ∗ 109           𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚

 

 

𝐸𝑡𝑢 = 

{
 
 

 
 420 ∗ 10

6        𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚

860 ∗ 106                   𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑆𝑡𝑒𝑒𝑙

270 ∗ 106      𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚

900 ∗ 106          𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚

 

 



www.manaraa.com

159 

 

𝐸𝑡𝑦 = 

{
 
 

 
 320 ∗ 10

6         𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚

620 ∗ 106                    𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑆𝑡𝑒𝑒𝑙

165 ∗ 106      𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚

855 ∗ 106          𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚

 

 

𝐶𝑜𝑠𝑡𝑏𝑢𝑠𝑝𝑒𝑟𝑘𝑔 = {

20         𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚
10                   𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑆𝑡𝑒𝑒𝑙
40      𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚
100        𝑖𝑓 𝑏𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚
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